mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-22 06:43:57 +00:00
Compare commits
546 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
71a4057fcf | ||
|
|
5ab7422508 | ||
|
|
8bcb3125c1 | ||
|
|
6baf1e31e2 | ||
|
|
ed567ef43b | ||
|
|
a6e64fbdf2 | ||
|
|
60cfa2a203 | ||
|
|
55bbf3b4a1 | ||
|
|
6bda1d2479 | ||
|
|
50f2219dd6 | ||
|
|
9e125d884c | ||
|
|
a6fbfc880c | ||
|
|
502028968d | ||
|
|
5a8eb0e151 | ||
|
|
9f8a18ec05 | ||
|
|
6b04cad7e8 | ||
|
|
45f56355d5 | ||
|
|
0dabb4ef6a | ||
|
|
2e77aa1ae7 | ||
|
|
deaabe292d | ||
|
|
af21a5ac39 | ||
|
|
f63d7f68eb | ||
|
|
82ad1dbc07 | ||
|
|
feeabdadd2 | ||
|
|
fc0309615e | ||
|
|
09d308d6b6 | ||
|
|
a8ed68bd93 | ||
|
|
2ae65ae471 | ||
|
|
a3b6886b7d | ||
|
|
c6a6d7294d | ||
|
|
2cf007c9d1 | ||
|
|
0683efa637 | ||
|
|
0943001193 | ||
|
|
5c42800fca | ||
|
|
65f10c2823 | ||
|
|
aaa7818000 | ||
|
|
f15ffc4320 | ||
|
|
d008f108cc | ||
|
|
5f57b0ef42 | ||
|
|
aa25aff10d | ||
|
|
ea79003180 | ||
|
|
9239a254e0 | ||
|
|
066d0f4746 | ||
|
|
aea6fb9b58 | ||
|
|
012cf65340 | ||
|
|
a45231af47 | ||
|
|
2307fc2bcd | ||
|
|
6623898198 | ||
|
|
eda472df1b | ||
|
|
f18e0cb550 | ||
|
|
68b58c5cb8 | ||
|
|
e8b981fa5d | ||
|
|
884d26093c | ||
|
|
1f371ea92f | ||
|
|
73d6a82cce | ||
|
|
6db8a3771c | ||
|
|
d950ff12c0 | ||
|
|
adff143bcd | ||
|
|
fbe6ae285a | ||
|
|
fdd4d479a3 | ||
|
|
61aeaf7e81 | ||
|
|
7359b02707 | ||
|
|
c890011322 | ||
|
|
e0ed984cde | ||
|
|
139f84cf21 | ||
|
|
375839ea2d | ||
|
|
69b2fe9282 | ||
|
|
9ed8bf14cb | ||
|
|
e6a800ca11 | ||
|
|
ff180c3466 | ||
|
|
3fe74fba42 | ||
|
|
1a0cfd080a | ||
|
|
94ab428e3f | ||
|
|
d755577473 | ||
|
|
a2cc8571c5 | ||
|
|
7edfdd2f5f | ||
|
|
333e360422 | ||
|
|
cb104a2082 | ||
|
|
27da2cddc5 | ||
|
|
feb8923ada | ||
|
|
fe623c2cf4 | ||
|
|
3c14461d5d | ||
|
|
499ae7311f | ||
|
|
ef202789fa | ||
|
|
55760195e6 | ||
|
|
bd68d3ae50 | ||
|
|
ff80718e9c | ||
|
|
0aa8b371dd | ||
|
|
23125648b8 | ||
|
|
0478d440f0 | ||
|
|
8cc33f4c2b | ||
|
|
f46df4e5d2 | ||
|
|
c6bcdc4223 | ||
|
|
4b903f088a | ||
|
|
c7f4ae7b9c | ||
|
|
526b2ed102 | ||
|
|
a7240c6d63 | ||
|
|
9d6df90805 | ||
|
|
0cefd46f23 | ||
|
|
ad035ad595 | ||
|
|
f95a1f2bef | ||
|
|
82a9e9462a | ||
|
|
76724e2f29 | ||
|
|
ecf14a220f | ||
|
|
69ce44b33c | ||
|
|
5969674cf1 | ||
|
|
867d75b21e | ||
|
|
3fa78598a1 | ||
|
|
0d6e35d3c6 | ||
|
|
6e9a7a2568 | ||
|
|
b585a58121 | ||
|
|
fa9973cd7f | ||
|
|
3d9498a425 | ||
|
|
3098c8b29b | ||
|
|
5e380c3b42 | ||
|
|
392de84031 | ||
|
|
5d967d59b1 | ||
|
|
af31ccefc0 | ||
|
|
fa393554b9 | ||
|
|
307e3b3e1d | ||
|
|
4090aca97b | ||
|
|
92ce438de0 | ||
|
|
424810450f | ||
|
|
95e744beeb | ||
|
|
3b2d2c8326 | ||
|
|
d931ee8f22 | ||
|
|
7073600797 | ||
|
|
b1c40138da | ||
|
|
17466217e5 | ||
|
|
1703d1472e | ||
|
|
913905028b | ||
|
|
7e5c8eee5c | ||
|
|
6a74bba7e7 | ||
|
|
76ea735aaf | ||
|
|
dd1d4e99e7 | ||
|
|
a6ef73f4f2 | ||
|
|
c2f5d6662b | ||
|
|
57fb759f3c | ||
|
|
8dd12c873d | ||
|
|
e6d2d04121 | ||
|
|
074bac8447 | ||
|
|
8e8f2c6d67 | ||
|
|
938e8447e8 | ||
|
|
d5d5f0c445 | ||
|
|
5478571e92 | ||
|
|
a7835c6716 | ||
|
|
ad3c7c9bda | ||
|
|
415c8fcc3d | ||
|
|
718eda1b3e | ||
|
|
421b7edeb4 | ||
|
|
7b68e254c2 | ||
|
|
7bec2724a5 | ||
|
|
a27462b708 | ||
|
|
6bf0b8193a | ||
|
|
db428adbb8 | ||
|
|
fe5b9bb21b | ||
|
|
6ec71d8fb6 | ||
|
|
44b466eeb2 | ||
|
|
a25f3f8260 | ||
|
|
dd93e1af85 | ||
|
|
5cfc1c39f3 | ||
|
|
f0ad49ea17 | ||
|
|
7ba9fa9c7d | ||
|
|
8bf11b84c1 | ||
|
|
470af8ab89 | ||
|
|
178761aef3 | ||
|
|
f0c66e6dea | ||
|
|
54055a6dae | ||
|
|
340448d2d1 | ||
|
|
ced7d0e53d | ||
|
|
a0dba0f8ae | ||
|
|
5e20b170a7 | ||
|
|
d26c18e25c | ||
|
|
8d376acc9b | ||
|
|
dc1e81f027 | ||
|
|
5d0279164c | ||
|
|
214a7678ea | ||
|
|
4892872c18 | ||
|
|
0b9198bf47 | ||
|
|
e9e5f61c45 | ||
|
|
11dde41824 | ||
|
|
a53d744b01 | ||
|
|
e82cdb5f24 | ||
|
|
40b10eee6d | ||
|
|
424f648632 | ||
|
|
2eb1fb3231 | ||
|
|
0806521642 | ||
|
|
88738b357b | ||
|
|
4e535e6188 | ||
|
|
40b8fdbdca | ||
|
|
d9472e31b7 | ||
|
|
1d99451ad7 | ||
|
|
09bb2e30f6 | ||
|
|
dc264be6ff | ||
|
|
fbe7039618 | ||
|
|
943464ccb8 | ||
|
|
369de832cd | ||
|
|
3457a315b2 | ||
|
|
ed4e139314 | ||
|
|
56dc316a57 | ||
|
|
2fec73eef6 | ||
|
|
1e7f62cb42 | ||
|
|
ccb7eb8135 | ||
|
|
637fd21230 | ||
|
|
0fe487e732 | ||
|
|
6bfaa6e282 | ||
|
|
378d3210dc | ||
|
|
97fe45e36d | ||
|
|
64a9cc8f05 | ||
|
|
f50d691254 | ||
|
|
34c3b68fc8 | ||
|
|
f33ccd5d27 | ||
|
|
bc108b9ad6 | ||
|
|
0c3d27ae42 | ||
|
|
ef65174df2 | ||
|
|
42ecb9f138 | ||
|
|
5c0331fd83 | ||
|
|
e7019c9455 | ||
|
|
d98bfe7e70 | ||
|
|
6747099d71 | ||
|
|
ccc8c6777b | ||
|
|
dbb149e6f7 | ||
|
|
a807985e59 | ||
|
|
8643c4d5bf | ||
|
|
76014b9ac7 | ||
|
|
b0c3aba590 | ||
|
|
19c0c25de8 | ||
|
|
2f723ac2d6 | ||
|
|
249fbbe52f | ||
|
|
c38680b8a1 | ||
|
|
16fca86c4a | ||
|
|
0f3f9e353d | ||
|
|
eceb276901 | ||
|
|
6bd0a983cd | ||
|
|
1861fbdeb5 | ||
|
|
3b96a93672 | ||
|
|
e53b3cbd0c | ||
|
|
b51e0f397c | ||
|
|
b42970063d | ||
|
|
493385eb3e | ||
|
|
9876c9faa4 | ||
|
|
4e415029b3 | ||
|
|
e172f095ba | ||
|
|
c001b98087 | ||
|
|
23fc8e92eb | ||
|
|
4059a297a6 | ||
|
|
66b2539238 | ||
|
|
ef27d52e79 | ||
|
|
b2a465296d | ||
|
|
5d097277ef | ||
|
|
071a9872cb | ||
|
|
cc2978039c | ||
|
|
e9c7bade80 | ||
|
|
0bd0454ea7 | ||
|
|
6097b74894 | ||
|
|
2c9f7a9e17 | ||
|
|
01aa788722 | ||
|
|
ead27aa9fe | ||
|
|
b816ff86c9 | ||
|
|
e5d84fb90b | ||
|
|
dd66712e31 | ||
|
|
f66216e399 | ||
|
|
f4f0992b6e | ||
|
|
1feff61977 | ||
|
|
5e0b904e88 | ||
|
|
9bd1a6116c | ||
|
|
131f0355a5 | ||
|
|
17bb5ea679 | ||
|
|
ce929984a3 | ||
|
|
4b34930a31 | ||
|
|
74bd09652d | ||
|
|
fb6252d786 | ||
|
|
c794fef2f2 | ||
|
|
00ebda8cc4 | ||
|
|
d14ce75b95 | ||
|
|
2d6eac9084 | ||
|
|
3ed7ad3ab3 | ||
|
|
6d1103048e | ||
|
|
0ff28758b3 | ||
|
|
d3e9ca3eda | ||
|
|
0fbfcf3c9c | ||
|
|
0c220935bd | ||
|
|
ffbfe833da | ||
|
|
42a14f7f63 | ||
|
|
f8c3dbe5b5 | ||
|
|
b078dd157c | ||
|
|
2ddacd7516 | ||
|
|
da0e345200 | ||
|
|
df94175a0f | ||
|
|
61a8825216 | ||
|
|
a69a1e6e63 | ||
|
|
021dcf089d | ||
|
|
bf24498b1e | ||
|
|
95e271d98f | ||
|
|
364629b8d6 | ||
|
|
108fe02165 | ||
|
|
4561fff36e | ||
|
|
50b5962042 | ||
|
|
457576739f | ||
|
|
e27e4a3c1b | ||
|
|
088514bbd4 | ||
|
|
2c8b484643 | ||
|
|
8294676150 | ||
|
|
ef378ad673 | ||
|
|
2d2247e59e | ||
|
|
7bf793a600 | ||
|
|
282bfaaa95 | ||
|
|
9679f40146 | ||
|
|
3892c3a703 | ||
|
|
4e320b8b90 | ||
|
|
4cd0c73408 | ||
|
|
eb2b22b042 | ||
|
|
4ea4d2b189 | ||
|
|
8d76fa23ef | ||
|
|
74b44fdf8f | ||
|
|
65b88c544f | ||
|
|
a422ba39c9 | ||
|
|
d2ec22371e | ||
|
|
033cec232a | ||
|
|
543240fb5f | ||
|
|
4bed739259 | ||
|
|
80c7ce381b | ||
|
|
ccfd41c4f0 | ||
|
|
3e102b7dad | ||
|
|
ec46f3286c | ||
|
|
5e2e0b46b1 | ||
|
|
45a13b1dec | ||
|
|
5c0b663969 | ||
|
|
30d7a59ba8 | ||
|
|
4aeb67ef4c | ||
|
|
3ba91634c1 | ||
|
|
1b7433b71e | ||
|
|
a70820daa0 | ||
|
|
6b45b1d6b4 | ||
|
|
85ab552028 | ||
|
|
c3945aaa1d | ||
|
|
b3af953a55 | ||
|
|
3a65093078 | ||
|
|
ad4e0bf3be | ||
|
|
88ab587807 | ||
|
|
aee28501b5 | ||
|
|
83f0ec8269 | ||
|
|
c6b6938b3a | ||
|
|
fb4664fcec | ||
|
|
20e3593863 | ||
|
|
63a394068c | ||
|
|
ab39e08eb9 | ||
|
|
11bfa62796 | ||
|
|
f63e62e546 | ||
|
|
65b0f329d1 | ||
|
|
06007c0a18 | ||
|
|
a8e83a7654 | ||
|
|
475005504e | ||
|
|
2c40c4d35e | ||
|
|
e95278932b | ||
|
|
9d2a20a763 | ||
|
|
2e54d72fc3 | ||
|
|
6b32a2d549 | ||
|
|
c5cbe4fc2a | ||
|
|
f888912870 | ||
|
|
9e4642e9b3 | ||
|
|
6b0486c216 | ||
|
|
d368c039f0 | ||
|
|
9b54267e69 | ||
|
|
46bb0169c4 | ||
|
|
8934324b72 | ||
|
|
0e886595bf | ||
|
|
c62861f4fa | ||
|
|
0df1800436 | ||
|
|
631fecc6d9 | ||
|
|
4346c2409d | ||
|
|
4b037a97dc | ||
|
|
5f74d1fd47 | ||
|
|
4dcf80167a | ||
|
|
26a26998fb | ||
|
|
9926eae015 | ||
|
|
8585b7b151 | ||
|
|
7e34f4fbfa | ||
|
|
fe776293f7 | ||
|
|
d8a5d96b98 | ||
|
|
757668c42f | ||
|
|
96ec8afd09 | ||
|
|
e093db92c4 | ||
|
|
a1cda80bcb | ||
|
|
642a2496fe | ||
|
|
4614fafae0 | ||
|
|
4100ed7bdd | ||
|
|
f52b2615ef | ||
|
|
25f9b152f9 | ||
|
|
6da8b6a879 | ||
|
|
0daaaef8c9 | ||
|
|
98272fbd58 | ||
|
|
b27e8f3f10 | ||
|
|
45df786f09 | ||
|
|
daaf42e4a4 | ||
|
|
2dc60d4620 | ||
|
|
b5312f30e8 | ||
|
|
26c2e0bd35 | ||
|
|
bf920883d5 | ||
|
|
58b9ec1f6b | ||
|
|
7bae7fa5ce | ||
|
|
764e199d67 | ||
|
|
bfce55db3d | ||
|
|
bab6f34dc0 | ||
|
|
0682dae027 | ||
|
|
1f6986e919 | ||
|
|
4289c74359 | ||
|
|
25248f4bd5 | ||
|
|
e82001c122 | ||
|
|
a7e63b82be | ||
|
|
b70fc4d51e | ||
|
|
e2252d0fc6 | ||
|
|
cae5d4d4ea | ||
|
|
d80ea37d36 | ||
|
|
05a01fdecb | ||
|
|
8fe6f69f28 | ||
|
|
1fdb351c37 | ||
|
|
7a01ad7614 | ||
|
|
55ab9f371a | ||
|
|
fefbf8f74b | ||
|
|
b428ddd796 | ||
|
|
ba7d31240e | ||
|
|
d25efe3954 | ||
|
|
36dfb906bb | ||
|
|
a6f0f908b9 | ||
|
|
3b1ddb2b3a | ||
|
|
1579c4f06d | ||
|
|
3519dd1c6e | ||
|
|
e41c4cbea7 | ||
|
|
ee048b76d4 | ||
|
|
af68d60a58 | ||
|
|
92731dfc6f | ||
|
|
21aa666a1e | ||
|
|
ee141cc821 | ||
|
|
55e5776c44 | ||
|
|
854a9195f3 | ||
|
|
96a97adf9b | ||
|
|
e75c6126e9 | ||
|
|
cda6f5c66c | ||
|
|
1f7de23036 | ||
|
|
bebb6823c0 | ||
|
|
31e472baa4 | ||
|
|
657685e85d | ||
|
|
a14912858e | ||
|
|
eed11ded30 | ||
|
|
b42aba40ed | ||
|
|
25885e5335 | ||
|
|
8cc0064cf3 | ||
|
|
98d44fa39d | ||
|
|
2099e2d267 | ||
|
|
0c1041ad85 | ||
|
|
c245b0406f | ||
|
|
8b194b7520 | ||
|
|
3e8b8a1933 | ||
|
|
41dc280491 | ||
|
|
53d2990d9b | ||
|
|
e185c08ad9 | ||
|
|
2412adf42b | ||
|
|
be2ac1ed93 | ||
|
|
dc13813a03 | ||
|
|
d6af13efed | ||
|
|
a59f665235 | ||
|
|
688925aca9 | ||
|
|
76e903cf9d | ||
|
|
a5272130c4 | ||
|
|
d7d7e99662 | ||
|
|
2db96c18e7 | ||
|
|
e12af460ed | ||
|
|
88936d5c9a | ||
|
|
3ad4bc8afe | ||
|
|
0d694793f2 | ||
|
|
e91ae3d47d | ||
|
|
6ecd7f64ba | ||
|
|
888855675e | ||
|
|
b16367b4b2 | ||
|
|
a499390648 | ||
|
|
4df98f3eb5 | ||
|
|
348b3e0983 | ||
|
|
0b7e1676eb | ||
|
|
314573bfe8 | ||
|
|
4604b10306 | ||
|
|
8c13cfa4dd | ||
|
|
7cfd4aee4d | ||
|
|
b026930aba | ||
|
|
5eb640b20a | ||
|
|
f374747b0d | ||
|
|
68bac1e0a6 | ||
|
|
f53f4198c3 | ||
|
|
2192a28eed | ||
|
|
5d81c1a184 | ||
|
|
5c5535c064 | ||
|
|
e5bcc51ae1 | ||
|
|
bd6a7d5e64 | ||
|
|
14b5a9a150 | ||
|
|
ba9ec3d05e | ||
|
|
7c168b08c9 | ||
|
|
3d4cc7833c | ||
|
|
351a85d9ea | ||
|
|
bda4ef6c56 | ||
|
|
1e438b237c | ||
|
|
d721a02e7d | ||
|
|
778603a818 | ||
|
|
3c874df46e | ||
|
|
0d5897fadc | ||
|
|
d2eb226c91 | ||
|
|
e13e7c8d94 | ||
|
|
78f403ff45 | ||
|
|
5f8c03189e | ||
|
|
08a299e1d0 | ||
|
|
7b5d916a9a | ||
|
|
33ad61b112 | ||
|
|
716e365615 | ||
|
|
3b4424ff98 | ||
|
|
f9c7ead160 | ||
|
|
5930aaeb1a | ||
|
|
faf67db089 | ||
|
|
0667baddc6 | ||
|
|
d006e1e09b | ||
|
|
df2680b4b9 | ||
|
|
010313bb63 | ||
|
|
51a157d3d8 | ||
|
|
5296f487a8 | ||
|
|
f05774b04c | ||
|
|
6600bd7d91 | ||
|
|
ed443a0393 | ||
|
|
6945617af5 | ||
|
|
7916f55009 | ||
|
|
d650ad398f | ||
|
|
d223f3b697 | ||
|
|
60830695c2 | ||
|
|
01d9a46854 | ||
|
|
d773b7d671 | ||
|
|
4d4463b2bd | ||
|
|
0e38297f87 | ||
|
|
7e13f568dc | ||
|
|
58245413f4 | ||
|
|
8cf16063a5 | ||
|
|
3a4449e2f1 | ||
|
|
10d59d5f90 | ||
|
|
a4f69a0191 | ||
|
|
82658c3eec | ||
|
|
378d6e1e6a | ||
|
|
afa55bc70c | ||
|
|
2629a7aca4 | ||
|
|
d89b2f0fe7 | ||
|
|
a364232373 |
32
.github/workflows/release.yaml
vendored
32
.github/workflows/release.yaml
vendored
@@ -111,13 +111,13 @@ jobs:
|
||||
- os: windows
|
||||
arch: amd64
|
||||
preset: 'CUDA 12'
|
||||
install: https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe
|
||||
cuda-version: '12.4'
|
||||
install: https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571.96_windows.exe
|
||||
cuda-version: '12.8'
|
||||
- os: windows
|
||||
arch: amd64
|
||||
preset: 'ROCm 6'
|
||||
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
|
||||
rocm-version: '6.1'
|
||||
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
|
||||
rocm-version: '6.2'
|
||||
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
|
||||
environment: release
|
||||
env:
|
||||
@@ -160,6 +160,10 @@ jobs:
|
||||
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
- if: matrix.preset == 'CPU'
|
||||
run: |
|
||||
echo "CC=clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
echo "CXX=clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
- if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }}
|
||||
uses: actions/cache/save@v4
|
||||
with:
|
||||
@@ -329,7 +333,9 @@ jobs:
|
||||
done
|
||||
working-directory: dist/${{ matrix.os }}-${{ matrix.arch }}
|
||||
- run: |
|
||||
for ARCHIVE in dist/${{ matrix.os }}-${{ matrix.arch }}/*.tar.in; do tar c -C dist/${{ matrix.os }}-${{ matrix.arch }} -T $ARCHIVE | pigz -9vc >$(basename ${ARCHIVE//.*/}.tgz); done
|
||||
for ARCHIVE in dist/${{ matrix.os }}-${{ matrix.arch }}/*.tar.in; do
|
||||
tar c -C dist/${{ matrix.os }}-${{ matrix.arch }} -T $ARCHIVE --owner 0 --group 0 | pigz -9vc >$(basename ${ARCHIVE//.*/}.tgz);
|
||||
done
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: dist-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.target }}
|
||||
@@ -426,6 +432,22 @@ jobs:
|
||||
docker buildx imagetools inspect ollama/ollama:${{ steps.metadata.outputs.version }}
|
||||
working-directory: ${{ runner.temp }}
|
||||
|
||||
# Trigger downstream release process
|
||||
trigger:
|
||||
runs-on: ubuntu-latest
|
||||
environment: release
|
||||
needs: [darwin-build, windows-build, windows-depends]
|
||||
steps:
|
||||
- name: Trigger downstream release process
|
||||
run: |
|
||||
curl -L \
|
||||
-X POST \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "Authorization: Bearer ${{ secrets.RELEASE_TOKEN }}" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
https://api.github.com/repos/ollama/${{ vars.RELEASE_REPO }}/dispatches \
|
||||
-d "{\"event_type\": \"trigger-workflow\", \"client_payload\": {\"run_id\": \"${GITHUB_RUN_ID}\", \"version\": \"${GITHUB_REF_NAME#v}\"}}"
|
||||
|
||||
# Aggregate all the assets and ship a release
|
||||
release:
|
||||
needs: [darwin-sign, windows-sign, linux-build]
|
||||
|
||||
92
.github/workflows/test.yaml
vendored
92
.github/workflows/test.yaml
vendored
@@ -78,10 +78,10 @@ jobs:
|
||||
include:
|
||||
- preset: CPU
|
||||
- preset: CUDA
|
||||
install: https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_522.06_windows.exe
|
||||
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
|
||||
install: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
|
||||
flags: '-DCMAKE_CUDA_ARCHITECTURES=80'
|
||||
- preset: ROCm
|
||||
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
|
||||
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
|
||||
flags: '-DAMDGPU_TARGETS=gfx1010'
|
||||
runs-on: windows
|
||||
steps:
|
||||
@@ -102,7 +102,7 @@ jobs:
|
||||
$ErrorActionPreference = "Stop"
|
||||
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
|
||||
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
|
||||
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_11.8", "nvcc_11.8", "cublas_11.8", "cublas_dev_11.8")) -NoNewWindow -Wait
|
||||
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_11.3", "nvcc_11.3", "cublas_11.3", "cublas_dev_11.3")) -NoNewWindow -Wait
|
||||
}
|
||||
|
||||
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path
|
||||
@@ -140,6 +140,13 @@ jobs:
|
||||
env:
|
||||
CMAKE_GENERATOR: Ninja
|
||||
|
||||
go_mod_tidy:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: check that 'go mod tidy' is clean
|
||||
run: go mod tidy --diff || (echo "Please run 'go mod tidy'." && exit 1)
|
||||
|
||||
test:
|
||||
strategy:
|
||||
matrix:
|
||||
@@ -147,15 +154,82 @@ jobs:
|
||||
runs-on: ${{ matrix.os }}
|
||||
env:
|
||||
CGO_ENABLED: '1'
|
||||
GOEXPERIMENT: 'synctest'
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v5
|
||||
- name: checkout
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # 4.2.2
|
||||
|
||||
- name: cache restore
|
||||
uses: actions/cache/restore@1bd1e32a3bdc45362d1e726936510720a7c30a57 # v4.2.0
|
||||
with:
|
||||
# Note: unlike the other setups, this is only grabbing the mod download
|
||||
# cache, rather than the whole mod directory, as the download cache
|
||||
# contains zips that can be unpacked in parallel faster than they can be
|
||||
# fetched and extracted by tar
|
||||
path: |
|
||||
~/.cache/go-build
|
||||
~/go/pkg/mod/cache
|
||||
~\AppData\Local\go-build
|
||||
# NOTE: The -3- here should be incremented when the scheme of data to be
|
||||
# cached changes (e.g. path above changes).
|
||||
key: ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}-${{ github.run_id }}
|
||||
restore-keys: |
|
||||
${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}
|
||||
${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-
|
||||
|
||||
- name: Setup Go
|
||||
uses: actions/setup-go@v5
|
||||
with:
|
||||
# The caching strategy of setup-go is less than ideal, and wastes
|
||||
# time by not saving artifacts due to small failures like the linter
|
||||
# complaining, etc. This means subsequent have to rebuild their world
|
||||
# again until all checks pass. For instance, if you mispell a word,
|
||||
# you're punished until you fix it. This is more hostile than
|
||||
# helpful.
|
||||
cache: false
|
||||
|
||||
go-version-file: go.mod
|
||||
|
||||
# It is tempting to run this in a platform independent way, but the past
|
||||
# shows this codebase will see introductions of platform specific code
|
||||
# generation, and so we need to check this per platform to ensure we
|
||||
# don't abuse go generate on specific platforms.
|
||||
- name: check that 'go generate' is clean
|
||||
if: always()
|
||||
run: |
|
||||
go generate ./...
|
||||
git diff --name-only --exit-code || (echo "Please run 'go generate ./...'." && exit 1)
|
||||
|
||||
- name: go test
|
||||
if: always()
|
||||
run: go test -count=1 -benchtime=1x ./...
|
||||
|
||||
# TODO(bmizerany): replace this heavy tool with just the
|
||||
# tools/checks/binaries we want and then make them all run in parallel
|
||||
# across jobs, not on a single tiny vm on Github Actions.
|
||||
- uses: golangci/golangci-lint-action@v6
|
||||
with:
|
||||
args: --timeout 10m0s -v
|
||||
- run: go test ./...
|
||||
|
||||
- name: cache save
|
||||
# Always save the cache, even if the job fails. The artifacts produced
|
||||
# during the building of test binaries are not all for naught. They can
|
||||
# be used to speed up subsequent runs.
|
||||
if: always()
|
||||
|
||||
uses: actions/cache/save@1bd1e32a3bdc45362d1e726936510720a7c30a57 # v4.2.0
|
||||
with:
|
||||
# Note: unlike the other setups, this is only grabbing the mod download
|
||||
# cache, rather than the whole mod directory, as the download cache
|
||||
# contains zips that can be unpacked in parallel faster than they can be
|
||||
# fetched and extracted by tar
|
||||
path: |
|
||||
~/.cache/go-build
|
||||
~/go/pkg/mod/cache
|
||||
~\AppData\Local\go-build
|
||||
# NOTE: The -3- here should be incremented when the scheme of data to be
|
||||
# cached changes (e.g. path above changes).
|
||||
key: ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}-${{ github.run_id }}
|
||||
|
||||
patches:
|
||||
runs-on: ubuntu-latest
|
||||
@@ -163,5 +237,5 @@ jobs:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Verify patches apply cleanly and do not change files
|
||||
run: |
|
||||
make -f Makefile.sync clean sync
|
||||
git diff --compact-summary --exit-code
|
||||
make -f Makefile.sync clean checkout apply-patches sync
|
||||
git diff --compact-summary --exit-code
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -7,7 +7,6 @@
|
||||
0
|
||||
dist
|
||||
build
|
||||
ollama
|
||||
.cache
|
||||
*.exe
|
||||
.idea
|
||||
@@ -16,3 +15,4 @@ test_data
|
||||
__debug_bin*
|
||||
llama/build
|
||||
llama/vendor
|
||||
/ollama
|
||||
|
||||
@@ -6,8 +6,6 @@ linters:
|
||||
- bidichk
|
||||
- bodyclose
|
||||
- containedctx
|
||||
- contextcheck
|
||||
- errcheck
|
||||
- gocheckcompilerdirectives
|
||||
- gofmt
|
||||
- gofumpt
|
||||
@@ -21,12 +19,13 @@ linters:
|
||||
- nolintlint
|
||||
- nosprintfhostport
|
||||
- staticcheck
|
||||
- tenv
|
||||
- unconvert
|
||||
- unused
|
||||
- usestdlibvars
|
||||
- usetesting
|
||||
- wastedassign
|
||||
- whitespace
|
||||
disable:
|
||||
- usestdlibvars
|
||||
- errcheck
|
||||
linters-settings:
|
||||
staticcheck:
|
||||
checks:
|
||||
@@ -39,5 +38,4 @@ severity:
|
||||
- gofmt
|
||||
- goimports
|
||||
- intrange
|
||||
- usestdlibvars
|
||||
severity: info
|
||||
|
||||
@@ -23,8 +23,10 @@ set(GGML_SCHED_MAX_COPIES 4)
|
||||
set(GGML_LLAMAFILE ON)
|
||||
set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128)
|
||||
set(GGML_CUDA_GRAPHS ON)
|
||||
set(GGML_CUDA_FA ON)
|
||||
set(GGML_CUDA_COMPRESSION_MODE default)
|
||||
|
||||
if((NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
|
||||
if((CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
|
||||
OR (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_SYSTEM_PROCESSOR MATCHES "arm|aarch64|ARM64|ARMv[0-9]+"))
|
||||
set(GGML_CPU_ALL_VARIANTS ON)
|
||||
endif()
|
||||
@@ -49,6 +51,8 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/include
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu)
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu/amx)
|
||||
|
||||
add_compile_definitions(NDEBUG)
|
||||
|
||||
set(GGML_CPU ON)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
|
||||
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)
|
||||
@@ -85,9 +89,10 @@ if(CMAKE_CUDA_COMPILER)
|
||||
)
|
||||
endif()
|
||||
|
||||
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX "^gfx(906|908|90a):xnack[+-]$"
|
||||
|
||||
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX ""
|
||||
CACHE STRING
|
||||
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(906|908|90a):xnack[+-]$\"."
|
||||
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(908|90a):xnack[+-]$\"."
|
||||
)
|
||||
|
||||
check_language(HIP)
|
||||
@@ -96,7 +101,7 @@ if(CMAKE_HIP_COMPILER)
|
||||
|
||||
find_package(hip REQUIRED)
|
||||
if(NOT AMDGPU_TARGETS)
|
||||
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(803|900(:xnack-)|902|906(:xnack-)|90c(:xnack-)|1010(:xnack-)|1011|1012(:xnack-)|103[0-6]|110[0-3]|1150)$")
|
||||
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(803|900(:xnack-)|902|906(:xnack-)|90c(:xnack-)|1010(:xnack-)|1011(:xnack-)|1012(:xnack-)|103[0-6]|110[0-3]|115[01]|1201)$")
|
||||
elseif(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
|
||||
list(FILTER AMDGPU_TARGETS EXCLUDE REGEX ${WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX})
|
||||
endif()
|
||||
@@ -104,6 +109,12 @@ if(CMAKE_HIP_COMPILER)
|
||||
if(AMDGPU_TARGETS)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
|
||||
|
||||
if (WIN32)
|
||||
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
target_compile_definitions(ggml-hip PRIVATE GGML_HIP_NO_VMM)
|
||||
|
||||
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
|
||||
install(TARGETS ggml-hip
|
||||
RUNTIME_DEPENDENCIES
|
||||
|
||||
@@ -21,14 +21,16 @@
|
||||
"name": "CUDA 11",
|
||||
"inherits": [ "CUDA" ],
|
||||
"cacheVariables": {
|
||||
"CMAKE_CUDA_ARCHITECTURES": "50;52;53;60;61;62;70;72;75;80;86"
|
||||
"CMAKE_CUDA_ARCHITECTURES": "50;52;53;60;61;70;75;80;86",
|
||||
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "CUDA 12",
|
||||
"inherits": [ "CUDA" ],
|
||||
"cacheVariables": {
|
||||
"CMAKE_CUDA_ARCHITECTURES": "60;61;62;70;72;75;80;86;87;89;90;90a"
|
||||
"CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;120",
|
||||
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets"
|
||||
}
|
||||
},
|
||||
{
|
||||
@@ -56,7 +58,7 @@
|
||||
"name": "ROCm 6",
|
||||
"inherits": [ "ROCm" ],
|
||||
"cacheVariables": {
|
||||
"AMDGPU_TARGETS": "gfx803;gfx902;gfx1011;gfx1030;gfx1031;gfx1032;gfx1034;gfx1035;gfx1036;gfx1100;gfx1101;gfx1102;gfx1103;gfx1150;gfx900:xnack-;gfx906:xnack-;gfx90c:xnack-;gfx1010:xnack-;gfx1012:xnack-;"
|
||||
"AMDGPU_TARGETS": "gfx803;gfx902;gfx1030;gfx1031;gfx1032;gfx1034;gfx1035;gfx1036;gfx1100;gfx1101;gfx1102;gfx1103;gfx1150;gfx1200;gfx1201;gfx900:xnack-;gfx906:xnack-;gfx90c:xnack-;gfx1010:xnack-;gfx1011:xnack-;gfx1012:xnack-;"
|
||||
}
|
||||
}
|
||||
],
|
||||
|
||||
@@ -6,8 +6,6 @@ Thank you for your interest in contributing to Ollama! Here are a few guidelines
|
||||
|
||||
See the [development documentation](./docs/development.md) for instructions on how to build and run Ollama locally.
|
||||
|
||||
## Pull requests
|
||||
|
||||
### Ideal issues
|
||||
|
||||
* [Bugs](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Abug): issues where Ollama stops working or where it results in an unexpected error.
|
||||
@@ -26,11 +24,64 @@ See the [development documentation](./docs/development.md) for instructions on h
|
||||
* Changes that add significant friction to the user experience
|
||||
* Changes that create a large future maintenance burden for maintainers and contributors
|
||||
|
||||
### Best practices
|
||||
## Proposing a (non-trivial) change
|
||||
|
||||
* Commit messages: please leave both a title and a description in your commit messages. The title should be a short summary of the changes, with a leading word that explains the section of the code being changed (e.g. `api: fix parsing of prompt field`) . In the description, leave a short 2-3 sentences that explain more about the change and its impact.
|
||||
* Tests: please add test coverage to changes where possible.
|
||||
* Minimize dependencies: avoid adding new dependencies unless absolutely necessary.
|
||||
> By "non-trivial", we mean a change that is not a bug fix or small
|
||||
> documentation update. If you are unsure, please ask us on our [Discord
|
||||
> server](https://discord.gg/ollama).
|
||||
|
||||
Before opening a non-trivial Pull Request, please open an issue to discuss the change and
|
||||
get feedback from the maintainers. This helps us understand the context of the
|
||||
change and how it fits into Ollama's roadmap and prevents us from duplicating
|
||||
work or you from spending time on a change that we may not be able to accept.
|
||||
|
||||
Tips for proposals:
|
||||
|
||||
* Explain the problem you are trying to solve, not what you are trying to do.
|
||||
* Explain why the change is important.
|
||||
* Explain how the change will be used.
|
||||
* Explain how the change will be tested.
|
||||
|
||||
Additionally, for bonus points: Provide draft documentation you would expect to
|
||||
see if the change were accepted.
|
||||
|
||||
## Pull requests
|
||||
|
||||
**Commit messages**
|
||||
|
||||
The title should look like:
|
||||
|
||||
<package>: <short description>
|
||||
|
||||
The package is the most affected Go package. If the change does not affect Go
|
||||
code, then use the directory name instead. Changes to a single well-known
|
||||
file in the root directory may use the file name.
|
||||
|
||||
The short description should start with a lowercase letter and be a
|
||||
continuation of the sentence:
|
||||
|
||||
"This changes Ollama to..."
|
||||
|
||||
Examples:
|
||||
|
||||
llm/backend/mlx: support the llama architecture
|
||||
CONTRIBUTING: provide clairity on good commit messages, and bad
|
||||
|
||||
Bad Examples:
|
||||
|
||||
feat: add more emoji
|
||||
fix: was not using famous web framework
|
||||
chore: generify code
|
||||
|
||||
**Tests**
|
||||
|
||||
Please include tests. Strive to test behavior, not implementation.
|
||||
|
||||
**New dependencies**
|
||||
|
||||
Dependencies should be added sparingly. If you are adding a new dependency,
|
||||
please explain why it is necessary and what other ways you attempted that
|
||||
did not work without it.
|
||||
|
||||
## Need help?
|
||||
|
||||
|
||||
47
Dockerfile
47
Dockerfile
@@ -2,22 +2,24 @@
|
||||
|
||||
ARG FLAVOR=${TARGETARCH}
|
||||
|
||||
ARG ROCMVERSION=6.1.2
|
||||
ARG ROCMVERSION=6.3.3
|
||||
ARG JETPACK5VERSION=r35.4.1
|
||||
ARG JETPACK6VERSION=r36.2.0
|
||||
ARG JETPACK6VERSION=r36.4.0
|
||||
ARG CMAKEVERSION=3.31.2
|
||||
|
||||
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCMVERSION}-complete AS base-amd64
|
||||
RUN sed -i -e 's/mirror.centos.org/vault.centos.org/g' -e 's/^#.*baseurl=http/baseurl=http/g' -e 's/^mirrorlist=http/#mirrorlist=http/g' /etc/yum.repos.d/*.repo \
|
||||
&& yum install -y yum-utils devtoolset-10-gcc devtoolset-10-gcc-c++ \
|
||||
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo \
|
||||
&& curl -s -L https://github.com/ccache/ccache/releases/download/v4.10.2/ccache-4.10.2-linux-x86_64.tar.xz | tar -Jx -C /usr/local/bin --strip-components 1
|
||||
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:/opt/rh/devtoolset-11/root/usr/bin:$PATH
|
||||
# CUDA v11 requires gcc v10. v10.3 has regressions, so the rockylinux 8.5 AppStream has the latest compatible version
|
||||
FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base-amd64
|
||||
RUN yum install -y yum-utils \
|
||||
&& yum-config-manager --add-repo https://dl.rockylinux.org/vault/rocky/8.5/AppStream/\$basearch/os/ \
|
||||
&& rpm --import https://dl.rockylinux.org/pub/rocky/RPM-GPG-KEY-Rocky-8 \
|
||||
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 gcc-toolset-10-binutils-2.35-11.el8 \
|
||||
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
|
||||
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
||||
|
||||
FROM --platform=linux/arm64 rockylinux:8 AS base-arm64
|
||||
FROM --platform=linux/arm64 almalinux:8 AS base-arm64
|
||||
# install epel-release for ccache
|
||||
RUN yum install -y yum-utils epel-release \
|
||||
&& yum install -y clang ccache \
|
||||
&& dnf install -y clang ccache \
|
||||
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo
|
||||
ENV CC=clang CXX=clang++
|
||||
|
||||
@@ -29,9 +31,8 @@ COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
||||
ENV LDFLAGS=-s
|
||||
|
||||
FROM base AS cpu
|
||||
# amd64 uses gcc which requires devtoolset-11 for AVX extensions while arm64 uses clang
|
||||
RUN if [ "$(uname -m)" = "x86_64" ]; then yum install -y devtoolset-11-gcc devtoolset-11-gcc-c++; fi
|
||||
ENV PATH=/opt/rh/devtoolset-11/root/usr/bin:$PATH
|
||||
RUN dnf install -y gcc-toolset-11-gcc gcc-toolset-11-gcc-c++
|
||||
ENV PATH=/opt/rh/gcc-toolset-11/root/usr/bin:$PATH
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'CPU' \
|
||||
&& cmake --build --parallel --preset 'CPU' \
|
||||
@@ -39,7 +40,7 @@ RUN --mount=type=cache,target=/root/.ccache \
|
||||
|
||||
FROM base AS cuda-11
|
||||
ARG CUDA11VERSION=11.3
|
||||
RUN yum install -y cuda-toolkit-${CUDA11VERSION//./-}
|
||||
RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-}
|
||||
ENV PATH=/usr/local/cuda-11/bin:$PATH
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'CUDA 11' \
|
||||
@@ -47,8 +48,8 @@ RUN --mount=type=cache,target=/root/.ccache \
|
||||
&& cmake --install build --component CUDA --strip --parallel 8
|
||||
|
||||
FROM base AS cuda-12
|
||||
ARG CUDA12VERSION=12.4
|
||||
RUN yum install -y cuda-toolkit-${CUDA12VERSION//./-}
|
||||
ARG CUDA12VERSION=12.8
|
||||
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
|
||||
ENV PATH=/usr/local/cuda-12/bin:$PATH
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'CUDA 12' \
|
||||
@@ -56,6 +57,7 @@ RUN --mount=type=cache,target=/root/.ccache \
|
||||
&& cmake --install build --component CUDA --strip --parallel 8
|
||||
|
||||
FROM base AS rocm-6
|
||||
ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'ROCm 6' \
|
||||
&& cmake --build --parallel --preset 'ROCm 6' \
|
||||
@@ -84,10 +86,11 @@ RUN --mount=type=cache,target=/root/.ccache \
|
||||
&& cmake --install build --component CUDA --strip --parallel 8
|
||||
|
||||
FROM base AS build
|
||||
ARG GOVERSION=1.23.4
|
||||
RUN curl -fsSL https://golang.org/dl/go${GOVERSION}.linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
|
||||
ENV PATH=/usr/local/go/bin:$PATH
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
COPY go.mod go.sum .
|
||||
RUN curl -fsSL https://golang.org/dl/go$(awk '/^go/ { print $2 }' go.mod).linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
|
||||
ENV PATH=/usr/local/go/bin:$PATH
|
||||
RUN go mod download
|
||||
COPY . .
|
||||
ARG GOFLAGS="'-ldflags=-w -s'"
|
||||
ENV CGO_ENABLED=1
|
||||
@@ -101,10 +104,10 @@ COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
|
||||
FROM --platform=linux/arm64 scratch AS arm64
|
||||
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
|
||||
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
|
||||
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 lib/ollama/cuda_jetpack5
|
||||
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 lib/ollama/cuda_jetpack6
|
||||
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_jetpack5
|
||||
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_jetpack6
|
||||
|
||||
FROM --platform=linux/arm64 scratch AS rocm
|
||||
FROM scratch AS rocm
|
||||
COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm
|
||||
|
||||
FROM ${FLAVOR} AS archive
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
|
||||
WORKDIR=llama/vendor
|
||||
FETCH_HEAD=46e3556e01b824e52395fb050b29804b6cff2a7c
|
||||
FETCH_HEAD=de4c07f93783a1a96456a44dc16b9db538ee1618
|
||||
|
||||
.PHONY: help
|
||||
help:
|
||||
@@ -15,27 +15,30 @@ help:
|
||||
@echo " make -f $(lastword $(MAKEFILE_LIST)) clean sync"
|
||||
|
||||
.PHONY: sync
|
||||
sync: llama/build-info.cpp llama/llama.cpp ml/backend/ggml/ggml apply-patches
|
||||
sync: llama/build-info.cpp ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal
|
||||
|
||||
.PHONY: llama/build-info.cpp
|
||||
llama/build-info.cpp: llama/build-info.cpp.in
|
||||
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' $< > $@
|
||||
llama/build-info.cpp: llama/build-info.cpp.in llama/llama.cpp
|
||||
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' <$< >$@
|
||||
|
||||
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal: ml/backend/ggml/ggml
|
||||
go generate ./$(@D)
|
||||
|
||||
.PHONY: llama/llama.cpp
|
||||
llama/llama.cpp: llama/vendor/ apply-patches
|
||||
llama/llama.cpp: llama/vendor/
|
||||
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
|
||||
|
||||
.PHONY: ml/backend/ggml/ggml apply-patches
|
||||
ml/backend/ggml/ggml: llama/vendor/ggml/ apply-patches
|
||||
.PHONY: ml/backend/ggml/ggml
|
||||
ml/backend/ggml/ggml: llama/vendor/ggml/
|
||||
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
|
||||
|
||||
PATCHES=$(wildcard llama/patches/*.patch)
|
||||
PATCHED=$(join $(dir $(PATCHES)), $(addsuffix ed, $(addprefix ., $(notdir $(PATCHES)))))
|
||||
|
||||
.PHONY: apply-patches
|
||||
.NOTPARALLEL:
|
||||
apply-patches: $(addsuffix ed, $(PATCHES))
|
||||
apply-patches: $(PATCHED)
|
||||
|
||||
%.patched: %.patch
|
||||
llama/patches/.%.patched: llama/patches/%.patch
|
||||
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then touch $@; else git -C $(WORKDIR) am --abort; exit 1; fi
|
||||
|
||||
.PHONY: checkout
|
||||
@@ -57,4 +60,4 @@ format-patches: llama/patches
|
||||
|
||||
.PHONE: clean
|
||||
clean: checkout
|
||||
$(RM) $(addsuffix ed, $(PATCHES))
|
||||
$(RM) llama/patches/.*.patched
|
||||
|
||||
99
README.md
99
README.md
@@ -1,5 +1,5 @@
|
||||
<div align="center">
|
||||
<a href="https://ollama.com" />
|
||||
<a href="https://ollama.com">
|
||||
<img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
|
||||
</a>
|
||||
</div>
|
||||
@@ -26,7 +26,7 @@ Please download from ollama [official](https://ollama.com/download/OllamaSetup.e
|
||||
|
||||
Example extra list add on this repo.
|
||||
```
|
||||
"gfx803" "gfx900:xnack-" "gfx902" gfx906:xnack- "gfx1010:xnack-" "gfx1011" "gfx1012:xnack-" "gfx1031" "gfx1032" "gfx1034" "gfx1035" "gfx1036" "gfx1103" "gfx1150(expertimental)"...
|
||||
(ROCm5) "gfx803" "gfx900:xnack-" "gfx902" (ROCm6) gfx906:xnack- "gfx1010:xnack-" "gfx1011" "gfx1012:xnack-" "gfx1031" "gfx1032" "gfx1034" "gfx1035" "gfx1036" "gfx1103" "gfx1150" "gfx1201" (expertimental)"...
|
||||
```
|
||||
Please follow the [wiki](https://github.com/likelovewant/ollama-for-amd/wiki) guide to build or use the pre-release version.
|
||||
|
||||
@@ -62,10 +62,10 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
|
||||
|
||||
## Quickstart
|
||||
|
||||
To run and chat with [Llama 3.2](https://ollama.com/library/llama3.2):
|
||||
To run and chat with [Gemma 3](https://ollama.com/library/gemma3):
|
||||
|
||||
```shell
|
||||
ollama run llama3.2
|
||||
ollama run gemma3
|
||||
```
|
||||
|
||||
## Model library
|
||||
@@ -76,8 +76,15 @@ Here are some example models that can be downloaded:
|
||||
|
||||
| Model | Parameters | Size | Download |
|
||||
| ------------------ | ---------- | ----- | -------------------------------- |
|
||||
| Gemma 3 | 1B | 815MB | `ollama run gemma3:1b` |
|
||||
| Gemma 3 | 4B | 3.3GB | `ollama run gemma3` |
|
||||
| Gemma 3 | 12B | 8.1GB | `ollama run gemma3:12b` |
|
||||
| Gemma 3 | 27B | 17GB | `ollama run gemma3:27b` |
|
||||
| QwQ | 32B | 20GB | `ollama run qwq` |
|
||||
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
|
||||
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
|
||||
| Llama 4 | 109B | 67GB | `ollama run llama4:scout` |
|
||||
| Llama 4 | 400B | 245GB | `ollama run llama4:maverick` |
|
||||
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
|
||||
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
|
||||
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
|
||||
@@ -86,10 +93,7 @@ Here are some example models that can be downloaded:
|
||||
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
|
||||
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
|
||||
| Phi 4 | 14B | 9.1GB | `ollama run phi4` |
|
||||
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
|
||||
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
|
||||
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
|
||||
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
|
||||
| Phi 4 Mini | 3.8B | 2.5GB | `ollama run phi4-mini` |
|
||||
| Mistral | 7B | 4.1GB | `ollama run mistral` |
|
||||
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
|
||||
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
|
||||
@@ -97,7 +101,7 @@ Here are some example models that can be downloaded:
|
||||
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
||||
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
||||
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
||||
| Solar | 10.7B | 6.1GB | `ollama run solar` |
|
||||
| Granite-3.3 | 8B | 4.9GB | `ollama run granite3.3` |
|
||||
|
||||
> [!NOTE]
|
||||
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||
@@ -297,6 +301,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
### Web & Desktop
|
||||
|
||||
- [Open WebUI](https://github.com/open-webui/open-webui)
|
||||
- [SwiftChat (macOS with ReactNative)](https://github.com/aws-samples/swift-chat)
|
||||
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
|
||||
- [Hollama](https://github.com/fmaclen/hollama)
|
||||
- [Lollms-Webui](https://github.com/ParisNeo/lollms-webui)
|
||||
@@ -304,12 +309,13 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
|
||||
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
|
||||
- [Saddle](https://github.com/jikkuatwork/saddle)
|
||||
- [TagSpaces](https://www.tagspaces.org) (A platform for file-based apps, [utilizing Ollama](https://docs.tagspaces.org/ai/) for the generation of tags and descriptions)
|
||||
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
|
||||
- [Chatbot UI v2](https://github.com/mckaywrigley/chatbot-ui)
|
||||
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
|
||||
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
|
||||
- [Ollamac](https://github.com/kevinhermawan/Ollamac)
|
||||
- [big-AGI](https://github.com/enricoros/big-AGI/blob/main/docs/config-local-ollama.md)
|
||||
- [big-AGI](https://github.com/enricoros/big-AGI)
|
||||
- [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core)
|
||||
- [Amica](https://github.com/semperai/amica)
|
||||
- [chatd](https://github.com/BruceMacD/chatd)
|
||||
@@ -330,6 +336,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Ollama Basic Chat: Uses HyperDiv Reactive UI](https://github.com/rapidarchitect/ollama_basic_chat)
|
||||
- [Ollama-chats RPG](https://github.com/drazdra/ollama-chats)
|
||||
- [IntelliBar](https://intellibar.app/) (AI-powered assistant for macOS)
|
||||
- [Jirapt](https://github.com/AliAhmedNada/jirapt) (Jira Integration to generate issues, tasks, epics)
|
||||
- [ojira](https://github.com/AliAhmedNada/ojira) (Jira chrome plugin to easily generate descriptions for tasks)
|
||||
- [QA-Pilot](https://github.com/reid41/QA-Pilot) (Interactive chat tool that can leverage Ollama models for rapid understanding and navigation of GitHub code repositories)
|
||||
- [ChatOllama](https://github.com/sugarforever/chat-ollama) (Open Source Chatbot based on Ollama with Knowledge Bases)
|
||||
- [CRAG Ollama Chat](https://github.com/Nagi-ovo/CRAG-Ollama-Chat) (Simple Web Search with Corrective RAG)
|
||||
@@ -343,13 +351,14 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [RWKV-Runner](https://github.com/josStorer/RWKV-Runner) (RWKV offline LLM deployment tool, also usable as a client for ChatGPT and Ollama)
|
||||
- [Ollama Grid Search](https://github.com/dezoito/ollama-grid-search) (app to evaluate and compare models)
|
||||
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
|
||||
- [Casibase](https://casibase.org) (An open source AI knowledge base and dialogue system combining the latest RAG, SSO, ollama support, and multiple large language models.)
|
||||
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
|
||||
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
|
||||
- [Shinkai Desktop](https://github.com/dcSpark/shinkai-apps) (Two click install Local AI using Ollama + Files + RAG)
|
||||
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in discord )
|
||||
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in Discord)
|
||||
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
|
||||
- [R2R](https://github.com/SciPhi-AI/R2R) (Open-source RAG engine)
|
||||
- [Ollama-Kis](https://github.com/elearningshow/ollama-kis) (A simple easy to use GUI with sample custom LLM for Drivers Education)
|
||||
- [Ollama-Kis](https://github.com/elearningshow/ollama-kis) (A simple easy-to-use GUI with sample custom LLM for Drivers Education)
|
||||
- [OpenGPA](https://opengpa.org) (Open-source offline-first Enterprise Agentic Application)
|
||||
- [Painting Droid](https://github.com/mateuszmigas/painting-droid) (Painting app with AI integrations)
|
||||
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
|
||||
@@ -358,16 +367,16 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
|
||||
- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac)
|
||||
- [Harbor](https://github.com/av/harbor) (Containerized LLM Toolkit with Ollama as default backend)
|
||||
- [PyGPT](https://github.com/szczyglis-dev/py-gpt) (AI desktop assistant for Linux, Windows and Mac)
|
||||
- [Alpaca](https://github.com/Jeffser/Alpaca) (An Ollama client application for linux and macos made with GTK4 and Adwaita)
|
||||
- [PyGPT](https://github.com/szczyglis-dev/py-gpt) (AI desktop assistant for Linux, Windows, and Mac)
|
||||
- [Alpaca](https://github.com/Jeffser/Alpaca) (An Ollama client application for Linux and macOS made with GTK4 and Adwaita)
|
||||
- [AutoGPT](https://github.com/Significant-Gravitas/AutoGPT/blob/master/docs/content/platform/ollama.md) (AutoGPT Ollama integration)
|
||||
- [Go-CREW](https://www.jonathanhecl.com/go-crew/) (Powerful Offline RAG in Golang)
|
||||
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
|
||||
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot and Ollama4j
|
||||
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot, and Ollama4j
|
||||
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
|
||||
- [Claude Dev](https://github.com/saoudrizwan/claude-dev) - VSCode extension for multi-file/whole-repo coding
|
||||
- [Cline](https://github.com/cline/cline) - Formerly known as Claude Dev is a VSCode extension for multi-file/whole-repo coding
|
||||
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption)
|
||||
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
|
||||
- [crewAI with Mesop](https://github.com/rapidarchitect/ollama-crew-mesop) (Mesop Web Interface to run crewAI with Ollama)
|
||||
- [Tkinter-based client](https://github.com/chyok/ollama-gui) (Python tkinter-based Client for Ollama)
|
||||
@@ -385,7 +394,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [DualMind](https://github.com/tcsenpai/dualmind) (Experimental app allowing two models to talk to each other in the terminal or in a web interface)
|
||||
- [ollamarama-matrix](https://github.com/h1ddenpr0cess20/ollamarama-matrix) (Ollama chatbot for the Matrix chat protocol)
|
||||
- [ollama-chat-app](https://github.com/anan1213095357/ollama-chat-app) (Flutter-based chat app)
|
||||
- [Perfect Memory AI](https://www.perfectmemory.ai/) (Productivity AI assists personalized by what you have seen on your screen, heard and said in the meetings)
|
||||
- [Perfect Memory AI](https://www.perfectmemory.ai/) (Productivity AI assists personalized by what you have seen on your screen, heard, and said in the meetings)
|
||||
- [Hexabot](https://github.com/hexastack/hexabot) (A conversational AI builder)
|
||||
- [Reddit Rate](https://github.com/rapidarchitect/reddit_analyzer) (Search and Rate Reddit topics with a weighted summation)
|
||||
- [OpenTalkGpt](https://github.com/adarshM84/OpenTalkGpt) (Chrome Extension to manage open-source models supported by Ollama, create custom models, and chat with models from a user-friendly UI)
|
||||
@@ -402,6 +411,26 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Chipper](https://github.com/TilmanGriesel/chipper) AI interface for tinkerers (Ollama, Haystack RAG, Python)
|
||||
- [ChibiChat](https://github.com/CosmicEventHorizon/ChibiChat) (Kotlin-based Android app to chat with Ollama and Koboldcpp API endpoints)
|
||||
- [LocalLLM](https://github.com/qusaismael/localllm) (Minimal Web-App to run ollama models on it with a GUI)
|
||||
- [Ollamazing](https://github.com/buiducnhat/ollamazing) (Web extension to run Ollama models)
|
||||
- [OpenDeepResearcher-via-searxng](https://github.com/benhaotang/OpenDeepResearcher-via-searxng) (A Deep Research equivalent endpoint with Ollama support for running locally)
|
||||
- [AntSK](https://github.com/AIDotNet/AntSK) (Out-of-the-box & Adaptable RAG Chatbot)
|
||||
- [MaxKB](https://github.com/1Panel-dev/MaxKB/) (Ready-to-use & flexible RAG Chatbot)
|
||||
- [yla](https://github.com/danielekp/yla) (Web interface to freely interact with your customized models)
|
||||
- [LangBot](https://github.com/RockChinQ/LangBot) (LLM-based instant messaging bots platform, with Agents, RAG features, supports multiple platforms)
|
||||
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
|
||||
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
|
||||
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
||||
- [Flufy](https://github.com/Aharon-Bensadoun/Flufy) (A beautiful chat interface for interacting with Ollama's API. Built with React, TypeScript, and Material-UI.)
|
||||
- [Ellama](https://github.com/zeozeozeo/ellama) (Friendly native app to chat with an Ollama instance)
|
||||
- [screenpipe](https://github.com/mediar-ai/screenpipe) Build agents powered by your screen history
|
||||
- [Ollamb](https://github.com/hengkysteen/ollamb) (Simple yet rich in features, cross-platform built with Flutter and designed for Ollama. Try the [web demo](https://hengkysteen.github.io/demo/ollamb/).)
|
||||
- [Writeopia](https://github.com/Writeopia/Writeopia) (Text editor with integration with Ollama)
|
||||
- [AppFlowy](https://github.com/AppFlowy-IO/AppFlowy) (AI collaborative workspace with Ollama, cross-platform and self-hostable)
|
||||
- [Lumina](https://github.com/cushydigit/lumina.git) (A lightweight, minimal React.js frontend for interacting with Ollama servers)
|
||||
- [Tiny Notepad](https://pypi.org/project/tiny-notepad) (A lightweight, notepad-like interface to chat with ollama available on PyPI)
|
||||
- [macLlama (macOS native)](https://github.com/hellotunamayo/macLlama) (A native macOS GUI application for interacting with Ollama models, featuring a chat interface.)
|
||||
- [GPTranslate](https://github.com/philberndt/GPTranslate) (A fast and lightweight, AI powered desktop translation application written with Rust and Tauri. Features real-time translation with OpenAI/Azure/Ollama.)
|
||||
- [ollama launcher](https://github.com/NGC13009/ollama-launcher) (A launcher for Ollama, aiming to provide users with convenient functions such as ollama server launching, management, or configuration.)
|
||||
|
||||
### Cloud
|
||||
|
||||
@@ -441,10 +470,16 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [SwollamaCLI](https://github.com/marcusziade/Swollama) bundled with the Swollama Swift package. [Demo](https://github.com/marcusziade/Swollama?tab=readme-ov-file#cli-usage)
|
||||
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
|
||||
- [PowershAI](https://github.com/rrg92/powershai) PowerShell module that brings AI to terminal on Windows, including support for Ollama
|
||||
- [DeepShell](https://github.com/Abyss-c0re/deepshell) Your self-hosted AI assistant. Interactive Shell, Files and Folders analysis.
|
||||
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
|
||||
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull, and download models from Ollama Registry in your terminal.
|
||||
- [GGUF-to-Ollama](https://github.com/jonathanhecl/gguf-to-ollama) - Importing GGUF to Ollama made easy (multiplatform)
|
||||
- [AWS-Strands-With-Ollama](https://github.com/rapidarchitect/ollama_strands) - AWS Strands Agents with Ollama Examples
|
||||
- [ollama-multirun](https://github.com/attogram/ollama-multirun) - A bash shell script to run a single prompt against any or all of your locally installed ollama models, saving the output and performance statistics as easily navigable web pages. ([Demo](https://attogram.github.io/ai_test_zone/))
|
||||
|
||||
### Apple Vision Pro
|
||||
|
||||
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Cross-platform AI chat app supporting Apple Vision Pro via "Designed for iPad")
|
||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||
|
||||
### Database
|
||||
@@ -459,14 +494,15 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
|
||||
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
|
||||
- [Gentoo](https://github.com/gentoo/guru/tree/master/app-misc/ollama)
|
||||
- [Homebrew](https://formulae.brew.sh/formula/ollama)
|
||||
- [Helm Chart](https://artifacthub.io/packages/helm/ollama-helm/ollama)
|
||||
- [Guix channel](https://codeberg.org/tusharhero/ollama-guix)
|
||||
- [Nix package](https://search.nixos.org/packages?channel=24.05&show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
|
||||
- [Nix package](https://search.nixos.org/packages?show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
|
||||
- [Flox](https://flox.dev/blog/ollama-part-one)
|
||||
|
||||
### Libraries
|
||||
|
||||
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
|
||||
- [LangChain](https://python.langchain.com/docs/integrations/chat/ollama/) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
|
||||
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
|
||||
- [crewAI](https://github.com/crewAIInc/crewAI)
|
||||
- [Yacana](https://remembersoftwares.github.io/yacana/) (User-friendly multi-agent framework for brainstorming and executing predetermined flows with built-in tool integration)
|
||||
@@ -513,17 +549,23 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Swollama for Swift](https://github.com/marcusziade/Swollama) with [DocC](https://marcusziade.github.io/Swollama/documentation/swollama/)
|
||||
- [GoLamify](https://github.com/prasad89/golamify)
|
||||
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
|
||||
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in unified API)
|
||||
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in a unified API)
|
||||
- [LlmTornado](https://github.com/lofcz/llmtornado) (C# library providing a unified interface for major FOSS & Commercial inference APIs)
|
||||
- [Ollama for Zig](https://github.com/dravenk/ollama-zig)
|
||||
- [Abso](https://github.com/lunary-ai/abso/blob/main/README.md#ollama) (OpenAI-compatible TypeScript SDK for any LLM provider)
|
||||
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
|
||||
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
|
||||
- [Ollama for D](https://github.com/kassane/ollama-d)
|
||||
- [OllamaPlusPlus](https://github.com/HardCodeDev777/OllamaPlusPlus) (Very simple C++ library for Ollama)
|
||||
|
||||
### Mobile
|
||||
|
||||
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS, and iPad)
|
||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
|
||||
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption)
|
||||
- [Ollama Android Chat](https://github.com/sunshine0523/OllamaServer) (No need for Termux, start the Ollama service with one click on an Android device)
|
||||
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
||||
|
||||
### Extensions & Plugins
|
||||
|
||||
@@ -545,7 +587,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Obsidian Local GPT plugin](https://github.com/pfrankov/obsidian-local-gpt)
|
||||
- [Open Interpreter](https://docs.openinterpreter.com/language-model-setup/local-models/ollama)
|
||||
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
|
||||
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use ollama as a copilot like Github copilot)
|
||||
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use Ollama as a copilot like GitHub Copilot)
|
||||
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
|
||||
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and Hugging Face)
|
||||
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
|
||||
@@ -555,8 +597,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
|
||||
- [ChatGPTBox: All in one browser extension](https://github.com/josStorer/chatGPTBox) with [Integrating Tutorial](https://github.com/josStorer/chatGPTBox/issues/616#issuecomment-1975186467)
|
||||
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
|
||||
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depends on ollama server)
|
||||
- [Terraform AWS Ollama & Open WebUI](https://github.com/xuyangbocn/terraform-aws-self-host-llm) (A Terraform module to deploy on AWS a ready-to-use Ollama service, together with its front end Open WebUI service.)
|
||||
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depend on ollama server)
|
||||
- [Terraform AWS Ollama & Open WebUI](https://github.com/xuyangbocn/terraform-aws-self-host-llm) (A Terraform module to deploy on AWS a ready-to-use Ollama service, together with its front-end Open WebUI service.)
|
||||
- [node-red-contrib-ollama](https://github.com/jakubburkiewicz/node-red-contrib-ollama)
|
||||
- [Local AI Helper](https://github.com/ivostoykov/localAI) (Chrome and Firefox extensions that enable interactions with the active tab and customisable API endpoints. Includes secure storage for user prompts.)
|
||||
- [vnc-lm](https://github.com/jake83741/vnc-lm) (Discord bot for messaging with LLMs through Ollama and LiteLLM. Seamlessly move between local and flagship models.)
|
||||
@@ -568,12 +610,17 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Alfred Ollama](https://github.com/zeitlings/alfred-ollama) (Alfred Workflow)
|
||||
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
|
||||
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
|
||||
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
|
||||
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
|
||||
- [SimpleOllamaUnity](https://github.com/HardCodeDev777/SimpleOllamaUnity) (Unity Engine extension for communicating with Ollama in a few lines of code. Also works at runtime)
|
||||
- [UnityCodeLama](https://github.com/HardCodeDev777/UnityCodeLama) (Unity Edtior tool to analyze scripts via Ollama)
|
||||
|
||||
### Supported backends
|
||||
|
||||
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
|
||||
|
||||
### Observability
|
||||
- [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native intergration to Ollama.
|
||||
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
|
||||
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
|
||||
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
|
||||
|
||||
@@ -10,7 +10,7 @@
|
||||
// repository].
|
||||
//
|
||||
// [the API documentation]: https://github.com/ollama/ollama/blob/main/docs/api.md
|
||||
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/examples
|
||||
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/api/examples
|
||||
package api
|
||||
|
||||
import (
|
||||
@@ -24,7 +24,10 @@ import (
|
||||
"net/http"
|
||||
"net/url"
|
||||
"runtime"
|
||||
"strconv"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/auth"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/version"
|
||||
@@ -76,6 +79,14 @@ func NewClient(base *url.URL, http *http.Client) *Client {
|
||||
}
|
||||
}
|
||||
|
||||
func getAuthorizationToken(ctx context.Context, challenge string) (string, error) {
|
||||
token, err := auth.Sign(ctx, []byte(challenge))
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
return token, nil
|
||||
}
|
||||
|
||||
func (c *Client) do(ctx context.Context, method, path string, reqData, respData any) error {
|
||||
var reqBody io.Reader
|
||||
var data []byte
|
||||
@@ -97,6 +108,21 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
|
||||
}
|
||||
|
||||
requestURL := c.base.JoinPath(path)
|
||||
|
||||
var token string
|
||||
if envconfig.UseAuth() || c.base.Hostname() == "ollama.com" {
|
||||
now := strconv.FormatInt(time.Now().Unix(), 10)
|
||||
chal := fmt.Sprintf("%s,%s?ts=%s", method, path, now)
|
||||
token, err = getAuthorizationToken(ctx, chal)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
q := requestURL.Query()
|
||||
q.Set("ts", now)
|
||||
requestURL.RawQuery = q.Encode()
|
||||
}
|
||||
|
||||
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), reqBody)
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -106,6 +132,10 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
|
||||
request.Header.Set("Accept", "application/json")
|
||||
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
|
||||
|
||||
if token != "" {
|
||||
request.Header.Set("Authorization", token)
|
||||
}
|
||||
|
||||
respObj, err := c.http.Do(request)
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -132,7 +162,7 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
|
||||
const maxBufferSize = 512 * format.KiloByte
|
||||
|
||||
func (c *Client) stream(ctx context.Context, method, path string, data any, fn func([]byte) error) error {
|
||||
var buf *bytes.Buffer
|
||||
var buf io.Reader
|
||||
if data != nil {
|
||||
bts, err := json.Marshal(data)
|
||||
if err != nil {
|
||||
@@ -143,6 +173,22 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
|
||||
}
|
||||
|
||||
requestURL := c.base.JoinPath(path)
|
||||
|
||||
var token string
|
||||
if envconfig.UseAuth() || c.base.Hostname() == "ollama.com" {
|
||||
var err error
|
||||
now := strconv.FormatInt(time.Now().Unix(), 10)
|
||||
chal := fmt.Sprintf("%s,%s?ts=%s", method, path, now)
|
||||
token, err = getAuthorizationToken(ctx, chal)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
q := requestURL.Query()
|
||||
q.Set("ts", now)
|
||||
requestURL.RawQuery = q.Encode()
|
||||
}
|
||||
|
||||
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), buf)
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -152,6 +198,10 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
|
||||
request.Header.Set("Accept", "application/x-ndjson")
|
||||
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
|
||||
|
||||
if token != "" {
|
||||
request.Header.Set("Authorization", token)
|
||||
}
|
||||
|
||||
response, err := c.http.Do(request)
|
||||
if err != nil {
|
||||
return err
|
||||
|
||||
@@ -1,6 +1,12 @@
|
||||
package api
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"net/http"
|
||||
"net/http/httptest"
|
||||
"net/url"
|
||||
"strings"
|
||||
"testing"
|
||||
)
|
||||
|
||||
@@ -43,3 +49,206 @@ func TestClientFromEnvironment(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// testError represents an internal error type with status code and message
|
||||
// this is used since the error response from the server is not a standard error struct
|
||||
type testError struct {
|
||||
message string
|
||||
statusCode int
|
||||
}
|
||||
|
||||
func (e testError) Error() string {
|
||||
return e.message
|
||||
}
|
||||
|
||||
func TestClientStream(t *testing.T) {
|
||||
testCases := []struct {
|
||||
name string
|
||||
responses []any
|
||||
wantErr string
|
||||
}{
|
||||
{
|
||||
name: "immediate error response",
|
||||
responses: []any{
|
||||
testError{
|
||||
message: "test error message",
|
||||
statusCode: http.StatusBadRequest,
|
||||
},
|
||||
},
|
||||
wantErr: "test error message",
|
||||
},
|
||||
{
|
||||
name: "error after successful chunks, ok response",
|
||||
responses: []any{
|
||||
ChatResponse{Message: Message{Content: "partial response 1"}},
|
||||
ChatResponse{Message: Message{Content: "partial response 2"}},
|
||||
testError{
|
||||
message: "mid-stream error",
|
||||
statusCode: http.StatusOK,
|
||||
},
|
||||
},
|
||||
wantErr: "mid-stream error",
|
||||
},
|
||||
{
|
||||
name: "successful stream completion",
|
||||
responses: []any{
|
||||
ChatResponse{Message: Message{Content: "chunk 1"}},
|
||||
ChatResponse{Message: Message{Content: "chunk 2"}},
|
||||
ChatResponse{
|
||||
Message: Message{Content: "final chunk"},
|
||||
Done: true,
|
||||
DoneReason: "stop",
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tc := range testCases {
|
||||
t.Run(tc.name, func(t *testing.T) {
|
||||
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
flusher, ok := w.(http.Flusher)
|
||||
if !ok {
|
||||
t.Fatal("expected http.Flusher")
|
||||
}
|
||||
|
||||
w.Header().Set("Content-Type", "application/x-ndjson")
|
||||
|
||||
for _, resp := range tc.responses {
|
||||
if errResp, ok := resp.(testError); ok {
|
||||
w.WriteHeader(errResp.statusCode)
|
||||
err := json.NewEncoder(w).Encode(map[string]string{
|
||||
"error": errResp.message,
|
||||
})
|
||||
if err != nil {
|
||||
t.Fatal("failed to encode error response:", err)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
if err := json.NewEncoder(w).Encode(resp); err != nil {
|
||||
t.Fatalf("failed to encode response: %v", err)
|
||||
}
|
||||
flusher.Flush()
|
||||
}
|
||||
}))
|
||||
defer ts.Close()
|
||||
|
||||
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
|
||||
|
||||
var receivedChunks []ChatResponse
|
||||
err := client.stream(t.Context(), http.MethodPost, "/v1/chat", nil, func(chunk []byte) error {
|
||||
var resp ChatResponse
|
||||
if err := json.Unmarshal(chunk, &resp); err != nil {
|
||||
return fmt.Errorf("failed to unmarshal chunk: %w", err)
|
||||
}
|
||||
receivedChunks = append(receivedChunks, resp)
|
||||
return nil
|
||||
})
|
||||
|
||||
if tc.wantErr != "" {
|
||||
if err == nil {
|
||||
t.Fatal("expected error but got nil")
|
||||
}
|
||||
if !strings.Contains(err.Error(), tc.wantErr) {
|
||||
t.Errorf("expected error containing %q, got %v", tc.wantErr, err)
|
||||
}
|
||||
return
|
||||
}
|
||||
if err != nil {
|
||||
t.Errorf("unexpected error: %v", err)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestClientDo(t *testing.T) {
|
||||
testCases := []struct {
|
||||
name string
|
||||
response any
|
||||
wantErr string
|
||||
}{
|
||||
{
|
||||
name: "immediate error response",
|
||||
response: testError{
|
||||
message: "test error message",
|
||||
statusCode: http.StatusBadRequest,
|
||||
},
|
||||
wantErr: "test error message",
|
||||
},
|
||||
{
|
||||
name: "server error response",
|
||||
response: testError{
|
||||
message: "internal error",
|
||||
statusCode: http.StatusInternalServerError,
|
||||
},
|
||||
wantErr: "internal error",
|
||||
},
|
||||
{
|
||||
name: "successful response",
|
||||
response: struct {
|
||||
ID string `json:"id"`
|
||||
Success bool `json:"success"`
|
||||
}{
|
||||
ID: "msg_123",
|
||||
Success: true,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tc := range testCases {
|
||||
t.Run(tc.name, func(t *testing.T) {
|
||||
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
if errResp, ok := tc.response.(testError); ok {
|
||||
w.WriteHeader(errResp.statusCode)
|
||||
err := json.NewEncoder(w).Encode(map[string]string{
|
||||
"error": errResp.message,
|
||||
})
|
||||
if err != nil {
|
||||
t.Fatal("failed to encode error response:", err)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
w.Header().Set("Content-Type", "application/json")
|
||||
if err := json.NewEncoder(w).Encode(tc.response); err != nil {
|
||||
t.Fatalf("failed to encode response: %v", err)
|
||||
}
|
||||
}))
|
||||
defer ts.Close()
|
||||
|
||||
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
|
||||
|
||||
var resp struct {
|
||||
ID string `json:"id"`
|
||||
Success bool `json:"success"`
|
||||
}
|
||||
err := client.do(t.Context(), http.MethodPost, "/v1/messages", nil, &resp)
|
||||
|
||||
if tc.wantErr != "" {
|
||||
if err == nil {
|
||||
t.Fatalf("got nil, want error %q", tc.wantErr)
|
||||
}
|
||||
if err.Error() != tc.wantErr {
|
||||
t.Errorf("error message mismatch: got %q, want %q", err.Error(), tc.wantErr)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
t.Fatalf("got error %q, want nil", err)
|
||||
}
|
||||
|
||||
if expectedResp, ok := tc.response.(struct {
|
||||
ID string `json:"id"`
|
||||
Success bool `json:"success"`
|
||||
}); ok {
|
||||
if resp.ID != expectedResp.ID {
|
||||
t.Errorf("response ID mismatch: got %q, want %q", resp.ID, expectedResp.ID)
|
||||
}
|
||||
if resp.Success != expectedResp.Success {
|
||||
t.Errorf("response Success mismatch: got %v, want %v", resp.Success, expectedResp.Success)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
157
api/types.go
157
api/types.go
@@ -10,6 +10,9 @@ import (
|
||||
"strconv"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
)
|
||||
|
||||
// StatusError is an error with an HTTP status code and message.
|
||||
@@ -73,13 +76,19 @@ type GenerateRequest struct {
|
||||
// this request.
|
||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||
|
||||
// Images is an optional list of base64-encoded images accompanying this
|
||||
// Images is an optional list of raw image bytes accompanying this
|
||||
// request, for multimodal models.
|
||||
Images []ImageData `json:"images,omitempty"`
|
||||
|
||||
// Options lists model-specific options. For example, temperature can be
|
||||
// set through this field, if the model supports it.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
Options map[string]any `json:"options"`
|
||||
|
||||
// Think controls whether thinking/reasoning models will think before
|
||||
// responding. Needs to be a pointer so we can distinguish between false
|
||||
// (request that thinking _not_ be used) and unset (use the old behavior
|
||||
// before this option was introduced)
|
||||
Think *bool `json:"think,omitempty"`
|
||||
}
|
||||
|
||||
// ChatRequest describes a request sent by [Client.Chat].
|
||||
@@ -104,7 +113,11 @@ type ChatRequest struct {
|
||||
Tools `json:"tools,omitempty"`
|
||||
|
||||
// Options lists model-specific options.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
Options map[string]any `json:"options"`
|
||||
|
||||
// Think controls whether thinking/reasoning models will think before
|
||||
// responding
|
||||
Think *bool `json:"think,omitempty"`
|
||||
}
|
||||
|
||||
type Tools []Tool
|
||||
@@ -123,8 +136,11 @@ func (t Tool) String() string {
|
||||
// role ("system", "user", or "assistant"), the content and an optional list
|
||||
// of images.
|
||||
type Message struct {
|
||||
Role string `json:"role"`
|
||||
Content string `json:"content"`
|
||||
Role string `json:"role"`
|
||||
Content string `json:"content"`
|
||||
// Thinking contains the text that was inside thinking tags in the
|
||||
// original model output when ChatRequest.Think is enabled.
|
||||
Thinking string `json:"thinking,omitempty"`
|
||||
Images []ImageData `json:"images,omitempty"`
|
||||
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
|
||||
}
|
||||
@@ -160,19 +176,65 @@ func (t *ToolCallFunctionArguments) String() string {
|
||||
|
||||
type Tool struct {
|
||||
Type string `json:"type"`
|
||||
Items any `json:"items,omitempty"`
|
||||
Function ToolFunction `json:"function"`
|
||||
}
|
||||
|
||||
// PropertyType can be either a string or an array of strings
|
||||
type PropertyType []string
|
||||
|
||||
// UnmarshalJSON implements the json.Unmarshaler interface
|
||||
func (pt *PropertyType) UnmarshalJSON(data []byte) error {
|
||||
// Try to unmarshal as a string first
|
||||
var s string
|
||||
if err := json.Unmarshal(data, &s); err == nil {
|
||||
*pt = []string{s}
|
||||
return nil
|
||||
}
|
||||
|
||||
// If that fails, try to unmarshal as an array of strings
|
||||
var a []string
|
||||
if err := json.Unmarshal(data, &a); err != nil {
|
||||
return err
|
||||
}
|
||||
*pt = a
|
||||
return nil
|
||||
}
|
||||
|
||||
// MarshalJSON implements the json.Marshaler interface
|
||||
func (pt PropertyType) MarshalJSON() ([]byte, error) {
|
||||
if len(pt) == 1 {
|
||||
// If there's only one type, marshal as a string
|
||||
return json.Marshal(pt[0])
|
||||
}
|
||||
// Otherwise marshal as an array
|
||||
return json.Marshal([]string(pt))
|
||||
}
|
||||
|
||||
// String returns a string representation of the PropertyType
|
||||
func (pt PropertyType) String() string {
|
||||
if len(pt) == 0 {
|
||||
return ""
|
||||
}
|
||||
if len(pt) == 1 {
|
||||
return pt[0]
|
||||
}
|
||||
return fmt.Sprintf("%v", []string(pt))
|
||||
}
|
||||
|
||||
type ToolFunction struct {
|
||||
Name string `json:"name"`
|
||||
Description string `json:"description"`
|
||||
Parameters struct {
|
||||
Type string `json:"type"`
|
||||
Defs any `json:"$defs,omitempty"`
|
||||
Items any `json:"items,omitempty"`
|
||||
Required []string `json:"required"`
|
||||
Properties map[string]struct {
|
||||
Type string `json:"type"`
|
||||
Description string `json:"description"`
|
||||
Enum []string `json:"enum,omitempty"`
|
||||
Type PropertyType `json:"type"`
|
||||
Items any `json:"items,omitempty"`
|
||||
Description string `json:"description"`
|
||||
Enum []any `json:"enum,omitempty"`
|
||||
} `json:"properties"`
|
||||
} `json:"parameters"`
|
||||
}
|
||||
@@ -222,9 +284,6 @@ type Options struct {
|
||||
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
|
||||
PresencePenalty float32 `json:"presence_penalty,omitempty"`
|
||||
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
|
||||
Mirostat int `json:"mirostat,omitempty"`
|
||||
MirostatTau float32 `json:"mirostat_tau,omitempty"`
|
||||
MirostatEta float32 `json:"mirostat_eta,omitempty"`
|
||||
Stop []string `json:"stop,omitempty"`
|
||||
}
|
||||
|
||||
@@ -234,12 +293,7 @@ type Runner struct {
|
||||
NumBatch int `json:"num_batch,omitempty"`
|
||||
NumGPU int `json:"num_gpu,omitempty"`
|
||||
MainGPU int `json:"main_gpu,omitempty"`
|
||||
LowVRAM bool `json:"low_vram,omitempty"`
|
||||
F16KV bool `json:"f16_kv,omitempty"` // Deprecated: This option is ignored
|
||||
LogitsAll bool `json:"logits_all,omitempty"`
|
||||
VocabOnly bool `json:"vocab_only,omitempty"`
|
||||
UseMMap *bool `json:"use_mmap,omitempty"`
|
||||
UseMLock bool `json:"use_mlock,omitempty"`
|
||||
NumThread int `json:"num_thread,omitempty"`
|
||||
}
|
||||
|
||||
@@ -258,7 +312,7 @@ type EmbedRequest struct {
|
||||
Truncate *bool `json:"truncate,omitempty"`
|
||||
|
||||
// Options lists model-specific options.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
Options map[string]any `json:"options"`
|
||||
}
|
||||
|
||||
// EmbedResponse is the response from [Client.Embed].
|
||||
@@ -284,7 +338,7 @@ type EmbeddingRequest struct {
|
||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||
|
||||
// Options lists model-specific options.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
Options map[string]any `json:"options"`
|
||||
}
|
||||
|
||||
// EmbeddingResponse is the response from [Client.Embeddings].
|
||||
@@ -330,7 +384,7 @@ type ShowRequest struct {
|
||||
Template string `json:"template"`
|
||||
Verbose bool `json:"verbose"`
|
||||
|
||||
Options map[string]interface{} `json:"options"`
|
||||
Options map[string]any `json:"options"`
|
||||
|
||||
// Deprecated: set the model name with Model instead
|
||||
Name string `json:"name"`
|
||||
@@ -338,16 +392,18 @@ type ShowRequest struct {
|
||||
|
||||
// ShowResponse is the response returned from [Client.Show].
|
||||
type ShowResponse struct {
|
||||
License string `json:"license,omitempty"`
|
||||
Modelfile string `json:"modelfile,omitempty"`
|
||||
Parameters string `json:"parameters,omitempty"`
|
||||
Template string `json:"template,omitempty"`
|
||||
System string `json:"system,omitempty"`
|
||||
Details ModelDetails `json:"details,omitempty"`
|
||||
Messages []Message `json:"messages,omitempty"`
|
||||
ModelInfo map[string]any `json:"model_info,omitempty"`
|
||||
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
|
||||
ModifiedAt time.Time `json:"modified_at,omitempty"`
|
||||
License string `json:"license,omitempty"`
|
||||
Modelfile string `json:"modelfile,omitempty"`
|
||||
Parameters string `json:"parameters,omitempty"`
|
||||
Template string `json:"template,omitempty"`
|
||||
System string `json:"system,omitempty"`
|
||||
Details ModelDetails `json:"details,omitempty"`
|
||||
Messages []Message `json:"messages,omitempty"`
|
||||
ModelInfo map[string]any `json:"model_info,omitempty"`
|
||||
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
|
||||
Tensors []Tensor `json:"tensors,omitempty"`
|
||||
Capabilities []model.Capability `json:"capabilities,omitempty"`
|
||||
ModifiedAt time.Time `json:"modified_at,omitempty"`
|
||||
}
|
||||
|
||||
// CopyRequest is the request passed to [Client.Copy].
|
||||
@@ -359,9 +415,9 @@ type CopyRequest struct {
|
||||
// PullRequest is the request passed to [Client.Pull].
|
||||
type PullRequest struct {
|
||||
Model string `json:"model"`
|
||||
Insecure bool `json:"insecure,omitempty"`
|
||||
Username string `json:"username"`
|
||||
Password string `json:"password"`
|
||||
Insecure bool `json:"insecure,omitempty"` // Deprecated: ignored
|
||||
Username string `json:"username"` // Deprecated: ignored
|
||||
Password string `json:"password"` // Deprecated: ignored
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
|
||||
// Deprecated: set the model name with Model instead
|
||||
@@ -420,13 +476,6 @@ type ProcessModelResponse struct {
|
||||
SizeVRAM int64 `json:"size_vram"`
|
||||
}
|
||||
|
||||
type RetrieveModelResponse struct {
|
||||
Id string `json:"id"`
|
||||
Object string `json:"object"`
|
||||
Created int64 `json:"created"`
|
||||
OwnedBy string `json:"owned_by"`
|
||||
}
|
||||
|
||||
type TokenResponse struct {
|
||||
Token string `json:"token"`
|
||||
}
|
||||
@@ -442,6 +491,10 @@ type GenerateResponse struct {
|
||||
// Response is the textual response itself.
|
||||
Response string `json:"response"`
|
||||
|
||||
// Thinking contains the text that was inside thinking tags in the
|
||||
// original model output when ChatRequest.Think is enabled.
|
||||
Thinking string `json:"thinking,omitempty"`
|
||||
|
||||
// Done specifies if the response is complete.
|
||||
Done bool `json:"done"`
|
||||
|
||||
@@ -465,6 +518,13 @@ type ModelDetails struct {
|
||||
QuantizationLevel string `json:"quantization_level"`
|
||||
}
|
||||
|
||||
// Tensor describes the metadata for a given tensor.
|
||||
type Tensor struct {
|
||||
Name string `json:"name"`
|
||||
Type string `json:"type"`
|
||||
Shape []uint64 `json:"shape"`
|
||||
}
|
||||
|
||||
func (m *Metrics) Summary() {
|
||||
if m.TotalDuration > 0 {
|
||||
fmt.Fprintf(os.Stderr, "total duration: %v\n", m.TotalDuration)
|
||||
@@ -493,7 +553,7 @@ func (m *Metrics) Summary() {
|
||||
}
|
||||
}
|
||||
|
||||
func (opts *Options) FromMap(m map[string]interface{}) error {
|
||||
func (opts *Options) FromMap(m map[string]any) error {
|
||||
valueOpts := reflect.ValueOf(opts).Elem() // names of the fields in the options struct
|
||||
typeOpts := reflect.TypeOf(opts).Elem() // types of the fields in the options struct
|
||||
|
||||
@@ -550,12 +610,12 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
|
||||
}
|
||||
field.SetString(val)
|
||||
case reflect.Slice:
|
||||
// JSON unmarshals to []interface{}, not []string
|
||||
val, ok := val.([]interface{})
|
||||
// JSON unmarshals to []any, not []string
|
||||
val, ok := val.([]any)
|
||||
if !ok {
|
||||
return fmt.Errorf("option %q must be of type array", key)
|
||||
}
|
||||
// convert []interface{} to []string
|
||||
// convert []any to []string
|
||||
slice := make([]string, len(val))
|
||||
for i, item := range val {
|
||||
str, ok := item.(string)
|
||||
@@ -602,19 +662,14 @@ func DefaultOptions() Options {
|
||||
RepeatPenalty: 1.1,
|
||||
PresencePenalty: 0.0,
|
||||
FrequencyPenalty: 0.0,
|
||||
Mirostat: 0,
|
||||
MirostatTau: 5.0,
|
||||
MirostatEta: 0.1,
|
||||
Seed: -1,
|
||||
|
||||
Runner: Runner{
|
||||
// options set when the model is loaded
|
||||
NumCtx: 2048,
|
||||
NumCtx: int(envconfig.ContextLength()),
|
||||
NumBatch: 512,
|
||||
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
|
||||
NumThread: 0, // let the runtime decide
|
||||
LowVRAM: false,
|
||||
UseMLock: false,
|
||||
UseMMap: nil,
|
||||
},
|
||||
}
|
||||
@@ -662,7 +717,7 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) {
|
||||
}
|
||||
|
||||
// FormatParams converts specified parameter options to their correct types
|
||||
func FormatParams(params map[string][]string) (map[string]interface{}, error) {
|
||||
func FormatParams(params map[string][]string) (map[string]any, error) {
|
||||
opts := Options{}
|
||||
valueOpts := reflect.ValueOf(&opts).Elem() // names of the fields in the options struct
|
||||
typeOpts := reflect.TypeOf(opts) // types of the fields in the options struct
|
||||
@@ -676,7 +731,7 @@ func FormatParams(params map[string][]string) (map[string]interface{}, error) {
|
||||
}
|
||||
}
|
||||
|
||||
out := make(map[string]interface{})
|
||||
out := make(map[string]any)
|
||||
// iterate params and set values based on json struct tags
|
||||
for key, vals := range params {
|
||||
if opt, ok := jsonOpts[key]; !ok {
|
||||
|
||||
@@ -134,7 +134,7 @@ func TestUseMmapParsingFromJSON(t *testing.T) {
|
||||
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
var oMap map[string]interface{}
|
||||
var oMap map[string]any
|
||||
err := json.Unmarshal([]byte(test.req), &oMap)
|
||||
require.NoError(t, err)
|
||||
opts := DefaultOptions()
|
||||
@@ -231,3 +231,191 @@ func TestMessage_UnmarshalJSON(t *testing.T) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestToolFunction_UnmarshalJSON(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
input string
|
||||
wantErr string
|
||||
}{
|
||||
{
|
||||
name: "valid enum with same types",
|
||||
input: `{
|
||||
"name": "test",
|
||||
"description": "test function",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"required": ["test"],
|
||||
"properties": {
|
||||
"test": {
|
||||
"type": "string",
|
||||
"description": "test prop",
|
||||
"enum": ["a", "b", "c"]
|
||||
}
|
||||
}
|
||||
}
|
||||
}`,
|
||||
wantErr: "",
|
||||
},
|
||||
{
|
||||
name: "empty enum array",
|
||||
input: `{
|
||||
"name": "test",
|
||||
"description": "test function",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"required": ["test"],
|
||||
"properties": {
|
||||
"test": {
|
||||
"type": "string",
|
||||
"description": "test prop",
|
||||
"enum": []
|
||||
}
|
||||
}
|
||||
}
|
||||
}`,
|
||||
wantErr: "",
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
var tf ToolFunction
|
||||
err := json.Unmarshal([]byte(tt.input), &tf)
|
||||
|
||||
if tt.wantErr != "" {
|
||||
require.Error(t, err)
|
||||
assert.Contains(t, err.Error(), tt.wantErr)
|
||||
} else {
|
||||
require.NoError(t, err)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestPropertyType_UnmarshalJSON(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
input string
|
||||
expected PropertyType
|
||||
}{
|
||||
{
|
||||
name: "string type",
|
||||
input: `"string"`,
|
||||
expected: PropertyType{"string"},
|
||||
},
|
||||
{
|
||||
name: "array of types",
|
||||
input: `["string", "number"]`,
|
||||
expected: PropertyType{"string", "number"},
|
||||
},
|
||||
{
|
||||
name: "array with single type",
|
||||
input: `["string"]`,
|
||||
expected: PropertyType{"string"},
|
||||
},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
var pt PropertyType
|
||||
if err := json.Unmarshal([]byte(test.input), &pt); err != nil {
|
||||
t.Errorf("Unexpected error: %v", err)
|
||||
}
|
||||
|
||||
if len(pt) != len(test.expected) {
|
||||
t.Errorf("Length mismatch: got %v, expected %v", len(pt), len(test.expected))
|
||||
}
|
||||
|
||||
for i, v := range pt {
|
||||
if v != test.expected[i] {
|
||||
t.Errorf("Value mismatch at index %d: got %v, expected %v", i, v, test.expected[i])
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestPropertyType_MarshalJSON(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
input PropertyType
|
||||
expected string
|
||||
}{
|
||||
{
|
||||
name: "single type",
|
||||
input: PropertyType{"string"},
|
||||
expected: `"string"`,
|
||||
},
|
||||
{
|
||||
name: "multiple types",
|
||||
input: PropertyType{"string", "number"},
|
||||
expected: `["string","number"]`,
|
||||
},
|
||||
{
|
||||
name: "empty type",
|
||||
input: PropertyType{},
|
||||
expected: `[]`,
|
||||
},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
data, err := json.Marshal(test.input)
|
||||
if err != nil {
|
||||
t.Errorf("Unexpected error: %v", err)
|
||||
}
|
||||
|
||||
if string(data) != test.expected {
|
||||
t.Errorf("Marshaled data mismatch: got %v, expected %v", string(data), test.expected)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestThinking_UnmarshalJSON(t *testing.T) {
|
||||
trueVal := true
|
||||
falseVal := false
|
||||
|
||||
tests := []struct {
|
||||
name string
|
||||
input string
|
||||
expectedThinking *bool
|
||||
expectedError bool
|
||||
}{
|
||||
{
|
||||
name: "true",
|
||||
input: `{ "think": true }`,
|
||||
expectedThinking: &trueVal,
|
||||
},
|
||||
{
|
||||
name: "false",
|
||||
input: `{ "think": false }`,
|
||||
expectedThinking: &falseVal,
|
||||
},
|
||||
{
|
||||
name: "unset",
|
||||
input: `{ }`,
|
||||
expectedThinking: nil,
|
||||
},
|
||||
{
|
||||
name: "invalid",
|
||||
input: `{ "think": "true" }`,
|
||||
expectedThinking: nil,
|
||||
expectedError: true,
|
||||
},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
var req GenerateRequest
|
||||
err := json.Unmarshal([]byte(test.input), &req)
|
||||
if test.expectedError {
|
||||
require.Error(t, err)
|
||||
} else {
|
||||
require.NoError(t, err)
|
||||
assert.Equal(t, test.expectedThinking, req.Think)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -4,20 +4,14 @@ import (
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/logutil"
|
||||
)
|
||||
|
||||
func InitLogging() {
|
||||
level := slog.LevelInfo
|
||||
|
||||
if envconfig.Debug() {
|
||||
level = slog.LevelDebug
|
||||
}
|
||||
|
||||
var logFile *os.File
|
||||
var err error
|
||||
// Detect if we're a GUI app on windows, and if not, send logs to console
|
||||
@@ -33,20 +27,8 @@ func InitLogging() {
|
||||
return
|
||||
}
|
||||
}
|
||||
handler := slog.NewTextHandler(logFile, &slog.HandlerOptions{
|
||||
Level: level,
|
||||
AddSource: true,
|
||||
ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
|
||||
if attr.Key == slog.SourceKey {
|
||||
source := attr.Value.Any().(*slog.Source)
|
||||
source.File = filepath.Base(source.File)
|
||||
}
|
||||
return attr
|
||||
},
|
||||
})
|
||||
|
||||
slog.SetDefault(slog.New(handler))
|
||||
|
||||
slog.SetDefault(logutil.NewLogger(logFile, envconfig.LogLevel()))
|
||||
slog.Info("ollama app started")
|
||||
}
|
||||
|
||||
|
||||
397
cmd/cmd.go
397
cmd/cmd.go
@@ -18,6 +18,8 @@ import (
|
||||
"os/signal"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"slices"
|
||||
"sort"
|
||||
"strconv"
|
||||
"strings"
|
||||
"sync/atomic"
|
||||
@@ -29,20 +31,39 @@ import (
|
||||
"github.com/olekukonko/tablewriter"
|
||||
"github.com/spf13/cobra"
|
||||
"golang.org/x/crypto/ssh"
|
||||
"golang.org/x/sync/errgroup"
|
||||
"golang.org/x/term"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/llama"
|
||||
"github.com/ollama/ollama/llama/runner"
|
||||
"github.com/ollama/ollama/parser"
|
||||
"github.com/ollama/ollama/progress"
|
||||
"github.com/ollama/ollama/readline"
|
||||
"github.com/ollama/ollama/runner"
|
||||
"github.com/ollama/ollama/server"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
"github.com/ollama/ollama/types/syncmap"
|
||||
"github.com/ollama/ollama/version"
|
||||
)
|
||||
|
||||
// ensureThinkingSupport emits a warning if the model does not advertise thinking support
|
||||
func ensureThinkingSupport(ctx context.Context, client *api.Client, name string) {
|
||||
if name == "" {
|
||||
return
|
||||
}
|
||||
resp, err := client.Show(ctx, &api.ShowRequest{Model: name})
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
for _, cap := range resp.Capabilities {
|
||||
if cap == model.CapabilityThinking {
|
||||
return
|
||||
}
|
||||
}
|
||||
fmt.Fprintf(os.Stderr, "warning: model %q does not support thinking output\n", name)
|
||||
}
|
||||
|
||||
var errModelfileNotFound = errors.New("specified Modelfile wasn't found")
|
||||
|
||||
func getModelfileName(cmd *cobra.Command) (string, error) {
|
||||
@@ -105,7 +126,7 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
|
||||
}
|
||||
spinner.Stop()
|
||||
|
||||
req.Name = args[0]
|
||||
req.Model = args[0]
|
||||
quantize, _ := cmd.Flags().GetString("quantize")
|
||||
if quantize != "" {
|
||||
req.Quantize = quantize
|
||||
@@ -116,34 +137,54 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
|
||||
return err
|
||||
}
|
||||
|
||||
if len(req.Files) > 0 {
|
||||
fileMap := map[string]string{}
|
||||
for f, digest := range req.Files {
|
||||
var g errgroup.Group
|
||||
g.SetLimit(max(runtime.GOMAXPROCS(0)-1, 1))
|
||||
|
||||
files := syncmap.NewSyncMap[string, string]()
|
||||
for f, digest := range req.Files {
|
||||
g.Go(func() error {
|
||||
if _, err := createBlob(cmd, client, f, digest, p); err != nil {
|
||||
return err
|
||||
}
|
||||
fileMap[filepath.Base(f)] = digest
|
||||
}
|
||||
req.Files = fileMap
|
||||
|
||||
// TODO: this is incorrect since the file might be in a subdirectory
|
||||
// instead this should take the path relative to the model directory
|
||||
// but the current implementation does not allow this
|
||||
files.Store(filepath.Base(f), digest)
|
||||
return nil
|
||||
})
|
||||
}
|
||||
|
||||
if len(req.Adapters) > 0 {
|
||||
fileMap := map[string]string{}
|
||||
for f, digest := range req.Adapters {
|
||||
adapters := syncmap.NewSyncMap[string, string]()
|
||||
for f, digest := range req.Adapters {
|
||||
g.Go(func() error {
|
||||
if _, err := createBlob(cmd, client, f, digest, p); err != nil {
|
||||
return err
|
||||
}
|
||||
fileMap[filepath.Base(f)] = digest
|
||||
}
|
||||
req.Adapters = fileMap
|
||||
|
||||
// TODO: same here
|
||||
adapters.Store(filepath.Base(f), digest)
|
||||
return nil
|
||||
})
|
||||
}
|
||||
|
||||
if err := g.Wait(); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
req.Files = files.Items()
|
||||
req.Adapters = adapters.Items()
|
||||
|
||||
bars := make(map[string]*progress.Bar)
|
||||
fn := func(resp api.ProgressResponse) error {
|
||||
if resp.Digest != "" {
|
||||
bar, ok := bars[resp.Digest]
|
||||
if !ok {
|
||||
bar = progress.NewBar(fmt.Sprintf("pulling %s...", resp.Digest[7:19]), resp.Total, resp.Completed)
|
||||
msg := resp.Status
|
||||
if msg == "" {
|
||||
msg = fmt.Sprintf("pulling %s...", resp.Digest[7:19])
|
||||
}
|
||||
bar = progress.NewBar(msg, resp.Total, resp.Completed)
|
||||
bars[resp.Digest] = bar
|
||||
p.Add(resp.Digest, bar)
|
||||
}
|
||||
@@ -212,7 +253,7 @@ func createBlob(cmd *cobra.Command, client *api.Client, path string, digest stri
|
||||
}
|
||||
}()
|
||||
|
||||
if err = client.CreateBlob(cmd.Context(), digest, io.TeeReader(bin, &pw)); err != nil {
|
||||
if err := client.CreateBlob(cmd.Context(), digest, io.TeeReader(bin, &pw)); err != nil {
|
||||
return "", err
|
||||
}
|
||||
return digest, nil
|
||||
@@ -242,6 +283,9 @@ func loadOrUnloadModel(cmd *cobra.Command, opts *runOptions) error {
|
||||
req := &api.GenerateRequest{
|
||||
Model: opts.Model,
|
||||
KeepAlive: opts.KeepAlive,
|
||||
|
||||
// pass Think here so we fail before getting to the chat prompt if the model doesn't support it
|
||||
Think: opts.Think,
|
||||
}
|
||||
|
||||
return client.Generate(cmd.Context(), req, func(api.GenerateResponse) error { return nil })
|
||||
@@ -256,6 +300,7 @@ func StopHandler(cmd *cobra.Command, args []string) error {
|
||||
if strings.Contains(err.Error(), "not found") {
|
||||
return fmt.Errorf("couldn't find model \"%s\" to stop", args[0])
|
||||
}
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
@@ -266,7 +311,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
||||
opts := runOptions{
|
||||
Model: args[0],
|
||||
WordWrap: os.Getenv("TERM") == "xterm-256color",
|
||||
Options: map[string]interface{}{},
|
||||
Options: map[string]any{},
|
||||
}
|
||||
|
||||
format, err := cmd.Flags().GetString("format")
|
||||
@@ -275,6 +320,22 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
||||
}
|
||||
opts.Format = format
|
||||
|
||||
thinkFlag := cmd.Flags().Lookup("think")
|
||||
if thinkFlag.Changed {
|
||||
think, err := cmd.Flags().GetBool("think")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
opts.Think = &think
|
||||
} else {
|
||||
opts.Think = nil
|
||||
}
|
||||
hidethinking, err := cmd.Flags().GetBool("hidethinking")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
opts.HideThinking = hidethinking
|
||||
|
||||
keepAlive, err := cmd.Flags().GetString("keepalive")
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -338,7 +399,26 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
||||
return err
|
||||
}
|
||||
|
||||
opts.MultiModal = len(info.ProjectorInfo) != 0
|
||||
opts.Think, err = inferThinkingOption(&info.Capabilities, &opts, thinkFlag.Changed)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
opts.MultiModal = slices.Contains(info.Capabilities, model.CapabilityVision)
|
||||
|
||||
// TODO: remove the projector info and vision info checks below,
|
||||
// these are left in for backwards compatibility with older servers
|
||||
// that don't have the capabilities field in the model info
|
||||
if len(info.ProjectorInfo) != 0 {
|
||||
opts.MultiModal = true
|
||||
}
|
||||
for k := range info.ModelInfo {
|
||||
if strings.Contains(k, ".vision.") {
|
||||
opts.MultiModal = true
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
opts.ParentModel = info.Details.ParentModel
|
||||
|
||||
if interactive {
|
||||
@@ -559,8 +639,9 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
|
||||
parameters, errParams := cmd.Flags().GetBool("parameters")
|
||||
system, errSystem := cmd.Flags().GetBool("system")
|
||||
template, errTemplate := cmd.Flags().GetBool("template")
|
||||
verbose, errVerbose := cmd.Flags().GetBool("verbose")
|
||||
|
||||
for _, boolErr := range []error{errLicense, errModelfile, errParams, errSystem, errTemplate} {
|
||||
for _, boolErr := range []error{errLicense, errModelfile, errParams, errSystem, errTemplate, errVerbose} {
|
||||
if boolErr != nil {
|
||||
return errors.New("error retrieving flags")
|
||||
}
|
||||
@@ -598,7 +679,7 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
|
||||
return errors.New("only one of '--license', '--modelfile', '--parameters', '--system', or '--template' can be specified")
|
||||
}
|
||||
|
||||
req := api.ShowRequest{Name: args[0]}
|
||||
req := api.ShowRequest{Name: args[0], Verbose: verbose}
|
||||
resp, err := client.Show(cmd.Context(), &req)
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -621,10 +702,10 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
return showInfo(resp, os.Stdout)
|
||||
return showInfo(resp, verbose, os.Stdout)
|
||||
}
|
||||
|
||||
func showInfo(resp *api.ShowResponse, w io.Writer) error {
|
||||
func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
|
||||
tableRender := func(header string, rows func() [][]string) {
|
||||
fmt.Fprintln(w, " ", header)
|
||||
table := tablewriter.NewWriter(w)
|
||||
@@ -658,6 +739,15 @@ func showInfo(resp *api.ShowResponse, w io.Writer) error {
|
||||
return
|
||||
})
|
||||
|
||||
if len(resp.Capabilities) > 0 {
|
||||
tableRender("Capabilities", func() (rows [][]string) {
|
||||
for _, capability := range resp.Capabilities {
|
||||
rows = append(rows, []string{"", capability.String()})
|
||||
}
|
||||
return
|
||||
})
|
||||
}
|
||||
|
||||
if resp.ProjectorInfo != nil {
|
||||
tableRender("Projector", func() (rows [][]string) {
|
||||
arch := resp.ProjectorInfo["general.architecture"].(string)
|
||||
@@ -681,12 +771,89 @@ func showInfo(resp *api.ShowResponse, w io.Writer) error {
|
||||
})
|
||||
}
|
||||
|
||||
if resp.ModelInfo != nil && verbose {
|
||||
tableRender("Metadata", func() (rows [][]string) {
|
||||
keys := make([]string, 0, len(resp.ModelInfo))
|
||||
for k := range resp.ModelInfo {
|
||||
keys = append(keys, k)
|
||||
}
|
||||
sort.Strings(keys)
|
||||
|
||||
for _, k := range keys {
|
||||
var v string
|
||||
switch vData := resp.ModelInfo[k].(type) {
|
||||
case bool:
|
||||
v = fmt.Sprintf("%t", vData)
|
||||
case string:
|
||||
v = vData
|
||||
case float64:
|
||||
v = fmt.Sprintf("%g", vData)
|
||||
case []any:
|
||||
targetWidth := 10 // Small width where we are displaying the data in a column
|
||||
|
||||
var itemsToShow int
|
||||
totalWidth := 1 // Start with 1 for opening bracket
|
||||
|
||||
// Find how many we can fit
|
||||
for i := range vData {
|
||||
itemStr := fmt.Sprintf("%v", vData[i])
|
||||
width := runewidth.StringWidth(itemStr)
|
||||
|
||||
// Add separator width (", ") for all items except the first
|
||||
if i > 0 {
|
||||
width += 2
|
||||
}
|
||||
|
||||
// Check if adding this item would exceed our width limit
|
||||
if totalWidth+width > targetWidth && i > 0 {
|
||||
break
|
||||
}
|
||||
|
||||
totalWidth += width
|
||||
itemsToShow++
|
||||
}
|
||||
|
||||
// Format the output
|
||||
if itemsToShow < len(vData) {
|
||||
v = fmt.Sprintf("%v", vData[:itemsToShow])
|
||||
v = strings.TrimSuffix(v, "]")
|
||||
v += fmt.Sprintf(" ...+%d more]", len(vData)-itemsToShow)
|
||||
} else {
|
||||
v = fmt.Sprintf("%v", vData)
|
||||
}
|
||||
default:
|
||||
v = fmt.Sprintf("%T", vData)
|
||||
}
|
||||
rows = append(rows, []string{"", k, v})
|
||||
}
|
||||
return
|
||||
})
|
||||
}
|
||||
|
||||
if len(resp.Tensors) > 0 && verbose {
|
||||
tableRender("Tensors", func() (rows [][]string) {
|
||||
for _, t := range resp.Tensors {
|
||||
rows = append(rows, []string{"", t.Name, t.Type, fmt.Sprint(t.Shape)})
|
||||
}
|
||||
return
|
||||
})
|
||||
}
|
||||
|
||||
head := func(s string, n int) (rows [][]string) {
|
||||
scanner := bufio.NewScanner(strings.NewReader(s))
|
||||
for scanner.Scan() && (len(rows) < n || n < 0) {
|
||||
if text := scanner.Text(); text != "" {
|
||||
rows = append(rows, []string{"", strings.TrimSpace(text)})
|
||||
count := 0
|
||||
for scanner.Scan() {
|
||||
text := strings.TrimSpace(scanner.Text())
|
||||
if text == "" {
|
||||
continue
|
||||
}
|
||||
count++
|
||||
if n < 0 || count <= n {
|
||||
rows = append(rows, []string{"", text})
|
||||
}
|
||||
}
|
||||
if n >= 0 && count > n {
|
||||
rows = append(rows, []string{"", "..."})
|
||||
}
|
||||
return
|
||||
}
|
||||
@@ -741,13 +908,38 @@ func PullHandler(cmd *cobra.Command, args []string) error {
|
||||
|
||||
fn := func(resp api.ProgressResponse) error {
|
||||
if resp.Digest != "" {
|
||||
if resp.Completed == 0 {
|
||||
// This is the initial status update for the
|
||||
// layer, which the server sends before
|
||||
// beginning the download, for clients to
|
||||
// compute total size and prepare for
|
||||
// downloads, if needed.
|
||||
//
|
||||
// Skipping this here to avoid showing a 0%
|
||||
// progress bar, which *should* clue the user
|
||||
// into the fact that many things are being
|
||||
// downloaded and that the current active
|
||||
// download is not that last. However, in rare
|
||||
// cases it seems to be triggering to some, and
|
||||
// it isn't worth explaining, so just ignore
|
||||
// and regress to the old UI that keeps giving
|
||||
// you the "But wait, there is more!" after
|
||||
// each "100% done" bar, which is "better."
|
||||
return nil
|
||||
}
|
||||
|
||||
if spinner != nil {
|
||||
spinner.Stop()
|
||||
}
|
||||
|
||||
bar, ok := bars[resp.Digest]
|
||||
if !ok {
|
||||
bar = progress.NewBar(fmt.Sprintf("pulling %s...", resp.Digest[7:19]), resp.Total, resp.Completed)
|
||||
name, isDigest := strings.CutPrefix(resp.Digest, "sha256:")
|
||||
name = strings.TrimSpace(name)
|
||||
if isDigest {
|
||||
name = name[:min(12, len(name))]
|
||||
}
|
||||
bar = progress.NewBar(fmt.Sprintf("pulling %s:", name), resp.Total, resp.Completed)
|
||||
bars[resp.Digest] = bar
|
||||
p.Add(resp.Digest, bar)
|
||||
}
|
||||
@@ -767,27 +959,25 @@ func PullHandler(cmd *cobra.Command, args []string) error {
|
||||
}
|
||||
|
||||
request := api.PullRequest{Name: args[0], Insecure: insecure}
|
||||
if err := client.Pull(cmd.Context(), &request, fn); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
return nil
|
||||
return client.Pull(cmd.Context(), &request, fn)
|
||||
}
|
||||
|
||||
type generateContextKey string
|
||||
|
||||
type runOptions struct {
|
||||
Model string
|
||||
ParentModel string
|
||||
Prompt string
|
||||
Messages []api.Message
|
||||
WordWrap bool
|
||||
Format string
|
||||
System string
|
||||
Images []api.ImageData
|
||||
Options map[string]interface{}
|
||||
MultiModal bool
|
||||
KeepAlive *api.Duration
|
||||
Model string
|
||||
ParentModel string
|
||||
Prompt string
|
||||
Messages []api.Message
|
||||
WordWrap bool
|
||||
Format string
|
||||
System string
|
||||
Images []api.ImageData
|
||||
Options map[string]any
|
||||
MultiModal bool
|
||||
KeepAlive *api.Duration
|
||||
Think *bool
|
||||
HideThinking bool
|
||||
}
|
||||
|
||||
type displayResponseState struct {
|
||||
@@ -843,6 +1033,26 @@ func displayResponse(content string, wordWrap bool, state *displayResponseState)
|
||||
}
|
||||
}
|
||||
|
||||
func thinkingOutputOpeningText(plainText bool) string {
|
||||
text := "Thinking...\n"
|
||||
|
||||
if plainText {
|
||||
return text
|
||||
}
|
||||
|
||||
return readline.ColorGrey + readline.ColorBold + text + readline.ColorDefault + readline.ColorGrey
|
||||
}
|
||||
|
||||
func thinkingOutputClosingText(plainText bool) string {
|
||||
text := "...done thinking.\n\n"
|
||||
|
||||
if plainText {
|
||||
return text
|
||||
}
|
||||
|
||||
return readline.ColorGrey + readline.ColorBold + text + readline.ColorDefault
|
||||
}
|
||||
|
||||
func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
|
||||
client, err := api.ClientFromEnvironment()
|
||||
if err != nil {
|
||||
@@ -870,14 +1080,34 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
|
||||
var latest api.ChatResponse
|
||||
var fullResponse strings.Builder
|
||||
var role string
|
||||
var thinkTagOpened bool = false
|
||||
var thinkTagClosed bool = false
|
||||
|
||||
fn := func(response api.ChatResponse) error {
|
||||
p.StopAndClear()
|
||||
if response.Message.Content != "" || !opts.HideThinking {
|
||||
p.StopAndClear()
|
||||
}
|
||||
|
||||
latest = response
|
||||
|
||||
role = response.Message.Role
|
||||
if response.Message.Thinking != "" && !opts.HideThinking {
|
||||
if !thinkTagOpened {
|
||||
fmt.Print(thinkingOutputOpeningText(false))
|
||||
thinkTagOpened = true
|
||||
}
|
||||
displayResponse(response.Message.Thinking, opts.WordWrap, state)
|
||||
}
|
||||
|
||||
content := response.Message.Content
|
||||
if thinkTagOpened && !thinkTagClosed && content != "" {
|
||||
fmt.Print(thinkingOutputClosingText(false))
|
||||
thinkTagClosed = true
|
||||
}
|
||||
// purposefully not putting thinking blocks in the response, which would
|
||||
// only be needed if we later added tool calling to the cli (they get
|
||||
// filtered out anyway since current models don't expect them unless you're
|
||||
// about to finish some tool calls)
|
||||
fullResponse.WriteString(content)
|
||||
|
||||
displayResponse(content, opts.WordWrap, state)
|
||||
@@ -894,6 +1124,7 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
|
||||
Messages: opts.Messages,
|
||||
Format: json.RawMessage(opts.Format),
|
||||
Options: opts.Options,
|
||||
Think: opts.Think,
|
||||
}
|
||||
|
||||
if opts.KeepAlive != nil {
|
||||
@@ -955,13 +1186,32 @@ func generate(cmd *cobra.Command, opts runOptions) error {
|
||||
}()
|
||||
|
||||
var state *displayResponseState = &displayResponseState{}
|
||||
var thinkTagOpened bool = false
|
||||
var thinkTagClosed bool = false
|
||||
|
||||
plainText := !term.IsTerminal(int(os.Stdout.Fd()))
|
||||
|
||||
fn := func(response api.GenerateResponse) error {
|
||||
p.StopAndClear()
|
||||
|
||||
latest = response
|
||||
content := response.Response
|
||||
|
||||
if response.Response != "" || !opts.HideThinking {
|
||||
p.StopAndClear()
|
||||
}
|
||||
|
||||
if response.Thinking != "" && !opts.HideThinking {
|
||||
if !thinkTagOpened {
|
||||
fmt.Print(thinkingOutputOpeningText(plainText))
|
||||
thinkTagOpened = true
|
||||
}
|
||||
displayResponse(response.Thinking, opts.WordWrap, state)
|
||||
}
|
||||
|
||||
if thinkTagOpened && !thinkTagClosed && content != "" {
|
||||
fmt.Print(thinkingOutputClosingText(plainText))
|
||||
thinkTagClosed = true
|
||||
}
|
||||
|
||||
displayResponse(content, opts.WordWrap, state)
|
||||
|
||||
return nil
|
||||
@@ -987,6 +1237,7 @@ func generate(cmd *cobra.Command, opts runOptions) error {
|
||||
System: opts.System,
|
||||
Options: opts.Options,
|
||||
KeepAlive: opts.KeepAlive,
|
||||
Think: opts.Think,
|
||||
}
|
||||
|
||||
if err := client.Generate(ctx, &request, fn); err != nil {
|
||||
@@ -1090,11 +1341,11 @@ func checkServerHeartbeat(cmd *cobra.Command, _ []string) error {
|
||||
return err
|
||||
}
|
||||
if err := client.Heartbeat(cmd.Context()); err != nil {
|
||||
if !strings.Contains(err.Error(), " refused") {
|
||||
if !(strings.Contains(err.Error(), " refused") || strings.Contains(err.Error(), "could not connect")) {
|
||||
return err
|
||||
}
|
||||
if err := startApp(cmd.Context(), client); err != nil {
|
||||
return errors.New("could not connect to ollama app, is it running?")
|
||||
return fmt.Errorf("ollama server not responding - %w", err)
|
||||
}
|
||||
}
|
||||
return nil
|
||||
@@ -1172,7 +1423,7 @@ func NewCLI() *cobra.Command {
|
||||
}
|
||||
|
||||
createCmd.Flags().StringP("file", "f", "", "Name of the Modelfile (default \"Modelfile\"")
|
||||
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_0)")
|
||||
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_K_M)")
|
||||
|
||||
showCmd := &cobra.Command{
|
||||
Use: "show MODEL",
|
||||
@@ -1187,6 +1438,7 @@ func NewCLI() *cobra.Command {
|
||||
showCmd.Flags().Bool("parameters", false, "Show parameters of a model")
|
||||
showCmd.Flags().Bool("template", false, "Show template of a model")
|
||||
showCmd.Flags().Bool("system", false, "Show system message of a model")
|
||||
showCmd.Flags().BoolP("verbose", "v", false, "Show detailed model information")
|
||||
|
||||
runCmd := &cobra.Command{
|
||||
Use: "run MODEL [PROMPT]",
|
||||
@@ -1201,6 +1453,8 @@ func NewCLI() *cobra.Command {
|
||||
runCmd.Flags().Bool("insecure", false, "Use an insecure registry")
|
||||
runCmd.Flags().Bool("nowordwrap", false, "Don't wrap words to the next line automatically")
|
||||
runCmd.Flags().String("format", "", "Response format (e.g. json)")
|
||||
runCmd.Flags().Bool("think", false, "Whether to use thinking mode for supported models")
|
||||
runCmd.Flags().Bool("hidethinking", false, "Hide thinking output (if provided)")
|
||||
|
||||
stopCmd := &cobra.Command{
|
||||
Use: "stop MODEL",
|
||||
@@ -1252,7 +1506,6 @@ func NewCLI() *cobra.Command {
|
||||
PreRunE: checkServerHeartbeat,
|
||||
RunE: ListRunningHandler,
|
||||
}
|
||||
|
||||
copyCmd := &cobra.Command{
|
||||
Use: "cp SOURCE DESTINATION",
|
||||
Short: "Copy a model",
|
||||
@@ -1271,7 +1524,6 @@ func NewCLI() *cobra.Command {
|
||||
|
||||
runnerCmd := &cobra.Command{
|
||||
Use: "runner",
|
||||
Short: llama.PrintSystemInfo(),
|
||||
Hidden: true,
|
||||
RunE: func(cmd *cobra.Command, args []string) error {
|
||||
return runner.Execute(os.Args[1:])
|
||||
@@ -1314,7 +1566,6 @@ func NewCLI() *cobra.Command {
|
||||
envVars["OLLAMA_NOPRUNE"],
|
||||
envVars["OLLAMA_ORIGINS"],
|
||||
envVars["OLLAMA_SCHED_SPREAD"],
|
||||
envVars["OLLAMA_TMPDIR"],
|
||||
envVars["OLLAMA_FLASH_ATTENTION"],
|
||||
envVars["OLLAMA_KV_CACHE_TYPE"],
|
||||
envVars["OLLAMA_LLM_LIBRARY"],
|
||||
@@ -1343,3 +1594,45 @@ func NewCLI() *cobra.Command {
|
||||
|
||||
return rootCmd
|
||||
}
|
||||
|
||||
// If the user has explicitly set thinking options, either through the CLI or
|
||||
// through the `/set think` or `set nothink` interactive options, then we
|
||||
// respect them. Otherwise, we check model capabilities to see if the model
|
||||
// supports thinking. If the model does support thinking, we enable it.
|
||||
// Otherwise, we unset the thinking option (which is different than setting it
|
||||
// to false).
|
||||
//
|
||||
// If capabilities are not provided, we fetch them from the server.
|
||||
func inferThinkingOption(caps *[]model.Capability, runOpts *runOptions, explicitlySetByUser bool) (*bool, error) {
|
||||
if explicitlySetByUser {
|
||||
return runOpts.Think, nil
|
||||
}
|
||||
|
||||
if caps == nil {
|
||||
client, err := api.ClientFromEnvironment()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
ret, err := client.Show(context.Background(), &api.ShowRequest{
|
||||
Model: runOpts.Model,
|
||||
})
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
caps = &ret.Capabilities
|
||||
}
|
||||
|
||||
thinkingSupported := false
|
||||
for _, cap := range *caps {
|
||||
if cap == model.CapabilityThinking {
|
||||
thinkingSupported = true
|
||||
}
|
||||
}
|
||||
|
||||
if thinkingSupported {
|
||||
thinking := true
|
||||
return &thinking, nil
|
||||
}
|
||||
|
||||
return nil, nil
|
||||
}
|
||||
|
||||
335
cmd/cmd_test.go
335
cmd/cmd_test.go
@@ -2,7 +2,6 @@ package cmd
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/json"
|
||||
"io"
|
||||
"net/http"
|
||||
@@ -10,11 +9,13 @@ import (
|
||||
"os"
|
||||
"strings"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
"github.com/spf13/cobra"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
)
|
||||
|
||||
func TestShowInfo(t *testing.T) {
|
||||
@@ -26,7 +27,7 @@ func TestShowInfo(t *testing.T) {
|
||||
ParameterSize: "7B",
|
||||
QuantizationLevel: "FP16",
|
||||
},
|
||||
}, &b); err != nil {
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -56,7 +57,7 @@ func TestShowInfo(t *testing.T) {
|
||||
ParameterSize: "7B",
|
||||
QuantizationLevel: "FP16",
|
||||
},
|
||||
}, &b); err != nil {
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -67,6 +68,60 @@ func TestShowInfo(t *testing.T) {
|
||||
embedding length 0
|
||||
quantization FP16
|
||||
|
||||
`
|
||||
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("verbose model", func(t *testing.T) {
|
||||
var b bytes.Buffer
|
||||
if err := showInfo(&api.ShowResponse{
|
||||
Details: api.ModelDetails{
|
||||
Family: "test",
|
||||
ParameterSize: "8B",
|
||||
QuantizationLevel: "FP16",
|
||||
},
|
||||
Parameters: `
|
||||
stop up`,
|
||||
ModelInfo: map[string]any{
|
||||
"general.architecture": "test",
|
||||
"general.parameter_count": float64(8_000_000_000),
|
||||
"some.true_bool": true,
|
||||
"some.false_bool": false,
|
||||
"test.context_length": float64(1000),
|
||||
"test.embedding_length": float64(11434),
|
||||
},
|
||||
Tensors: []api.Tensor{
|
||||
{Name: "blk.0.attn_k.weight", Type: "BF16", Shape: []uint64{42, 3117}},
|
||||
{Name: "blk.0.attn_q.weight", Type: "FP16", Shape: []uint64{3117, 42}},
|
||||
},
|
||||
}, true, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
expect := ` Model
|
||||
architecture test
|
||||
parameters 8B
|
||||
context length 1000
|
||||
embedding length 11434
|
||||
quantization FP16
|
||||
|
||||
Parameters
|
||||
stop up
|
||||
|
||||
Metadata
|
||||
general.architecture test
|
||||
general.parameter_count 8e+09
|
||||
some.false_bool false
|
||||
some.true_bool true
|
||||
test.context_length 1000
|
||||
test.embedding_length 11434
|
||||
|
||||
Tensors
|
||||
blk.0.attn_k.weight BF16 [42 3117]
|
||||
blk.0.attn_q.weight FP16 [3117 42]
|
||||
|
||||
`
|
||||
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||
@@ -88,7 +143,7 @@ func TestShowInfo(t *testing.T) {
|
||||
stop you
|
||||
stop up
|
||||
temperature 99`,
|
||||
}, &b); err != nil {
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -125,7 +180,7 @@ func TestShowInfo(t *testing.T) {
|
||||
"clip.vision.embedding_length": float64(0),
|
||||
"clip.vision.projection_dim": float64(0),
|
||||
},
|
||||
}, &b); err != nil {
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -158,7 +213,7 @@ func TestShowInfo(t *testing.T) {
|
||||
Ahoy, matey!
|
||||
Weigh anchor!
|
||||
`,
|
||||
}, &b); err != nil {
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -170,6 +225,7 @@ Weigh anchor!
|
||||
System
|
||||
You are a pirate!
|
||||
Ahoy, matey!
|
||||
...
|
||||
|
||||
`
|
||||
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||
@@ -187,7 +243,7 @@ Weigh anchor!
|
||||
QuantizationLevel: "FP16",
|
||||
},
|
||||
License: license,
|
||||
}, &b); err != nil {
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -205,6 +261,34 @@ Weigh anchor!
|
||||
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("capabilities", func(t *testing.T) {
|
||||
var b bytes.Buffer
|
||||
if err := showInfo(&api.ShowResponse{
|
||||
Details: api.ModelDetails{
|
||||
Family: "test",
|
||||
ParameterSize: "7B",
|
||||
QuantizationLevel: "FP16",
|
||||
},
|
||||
Capabilities: []model.Capability{model.CapabilityVision, model.CapabilityTools},
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
expect := " Model\n" +
|
||||
" architecture test \n" +
|
||||
" parameters 7B \n" +
|
||||
" quantization FP16 \n" +
|
||||
"\n" +
|
||||
" Capabilities\n" +
|
||||
" vision \n" +
|
||||
" tools \n" +
|
||||
"\n"
|
||||
|
||||
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
func TestDeleteHandler(t *testing.T) {
|
||||
@@ -253,7 +337,7 @@ func TestDeleteHandler(t *testing.T) {
|
||||
t.Cleanup(mockServer.Close)
|
||||
|
||||
cmd := &cobra.Command{}
|
||||
cmd.SetContext(context.TODO())
|
||||
cmd.SetContext(t.Context())
|
||||
if err := DeleteHandler(cmd, []string{"test-model"}); err != nil {
|
||||
t.Fatalf("DeleteHandler failed: %v", err)
|
||||
}
|
||||
@@ -315,11 +399,6 @@ func TestGetModelfileName(t *testing.T) {
|
||||
var expectedFilename string
|
||||
|
||||
if tt.fileExists {
|
||||
tempDir, err := os.MkdirTemp("", "modelfiledir")
|
||||
defer os.RemoveAll(tempDir)
|
||||
if err != nil {
|
||||
t.Fatalf("temp modelfile dir creation failed: %v", err)
|
||||
}
|
||||
var fn string
|
||||
if tt.modelfileName != "" {
|
||||
fn = tt.modelfileName
|
||||
@@ -327,10 +406,11 @@ func TestGetModelfileName(t *testing.T) {
|
||||
fn = "Modelfile"
|
||||
}
|
||||
|
||||
tempFile, err := os.CreateTemp(tempDir, fn)
|
||||
tempFile, err := os.CreateTemp(t.TempDir(), fn)
|
||||
if err != nil {
|
||||
t.Fatalf("temp modelfile creation failed: %v", err)
|
||||
}
|
||||
defer tempFile.Close()
|
||||
|
||||
expectedFilename = tempFile.Name()
|
||||
err = cmd.Flags().Set("file", expectedFilename)
|
||||
@@ -445,7 +525,7 @@ func TestPushHandler(t *testing.T) {
|
||||
|
||||
cmd := &cobra.Command{}
|
||||
cmd.Flags().Bool("insecure", false, "")
|
||||
cmd.SetContext(context.TODO())
|
||||
cmd.SetContext(t.Context())
|
||||
|
||||
// Redirect stderr to capture progress output
|
||||
oldStderr := os.Stderr
|
||||
@@ -490,6 +570,96 @@ func TestPushHandler(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func TestListHandler(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
args []string
|
||||
serverResponse []api.ListModelResponse
|
||||
expectedError string
|
||||
expectedOutput string
|
||||
}{
|
||||
{
|
||||
name: "list all models",
|
||||
args: []string{},
|
||||
serverResponse: []api.ListModelResponse{
|
||||
{Name: "model1", Digest: "sha256:abc123", Size: 1024, ModifiedAt: time.Now().Add(-24 * time.Hour)},
|
||||
{Name: "model2", Digest: "sha256:def456", Size: 2048, ModifiedAt: time.Now().Add(-48 * time.Hour)},
|
||||
},
|
||||
expectedOutput: "NAME ID SIZE MODIFIED \n" +
|
||||
"model1 sha256:abc12 1.0 KB 24 hours ago \n" +
|
||||
"model2 sha256:def45 2.0 KB 2 days ago \n",
|
||||
},
|
||||
{
|
||||
name: "filter models by prefix",
|
||||
args: []string{"model1"},
|
||||
serverResponse: []api.ListModelResponse{
|
||||
{Name: "model1", Digest: "sha256:abc123", Size: 1024, ModifiedAt: time.Now().Add(-24 * time.Hour)},
|
||||
{Name: "model2", Digest: "sha256:def456", Size: 2048, ModifiedAt: time.Now().Add(-24 * time.Hour)},
|
||||
},
|
||||
expectedOutput: "NAME ID SIZE MODIFIED \n" +
|
||||
"model1 sha256:abc12 1.0 KB 24 hours ago \n",
|
||||
},
|
||||
{
|
||||
name: "server error",
|
||||
args: []string{},
|
||||
expectedError: "server error",
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
if r.URL.Path != "/api/tags" || r.Method != http.MethodGet {
|
||||
t.Errorf("unexpected request to %s %s", r.Method, r.URL.Path)
|
||||
http.Error(w, "not found", http.StatusNotFound)
|
||||
return
|
||||
}
|
||||
|
||||
if tt.expectedError != "" {
|
||||
http.Error(w, tt.expectedError, http.StatusInternalServerError)
|
||||
return
|
||||
}
|
||||
|
||||
response := api.ListResponse{Models: tt.serverResponse}
|
||||
if err := json.NewEncoder(w).Encode(response); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}))
|
||||
defer mockServer.Close()
|
||||
|
||||
t.Setenv("OLLAMA_HOST", mockServer.URL)
|
||||
|
||||
cmd := &cobra.Command{}
|
||||
cmd.SetContext(t.Context())
|
||||
|
||||
// Capture stdout
|
||||
oldStdout := os.Stdout
|
||||
r, w, _ := os.Pipe()
|
||||
os.Stdout = w
|
||||
|
||||
err := ListHandler(cmd, tt.args)
|
||||
|
||||
// Restore stdout and get output
|
||||
w.Close()
|
||||
os.Stdout = oldStdout
|
||||
output, _ := io.ReadAll(r)
|
||||
|
||||
if tt.expectedError == "" {
|
||||
if err != nil {
|
||||
t.Errorf("expected no error, got %v", err)
|
||||
}
|
||||
if got := string(output); got != tt.expectedOutput {
|
||||
t.Errorf("expected output:\n%s\ngot:\n%s", tt.expectedOutput, got)
|
||||
}
|
||||
} else {
|
||||
if err == nil || !strings.Contains(err.Error(), tt.expectedError) {
|
||||
t.Errorf("expected error containing %q, got %v", tt.expectedError, err)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestCreateHandler(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
@@ -515,7 +685,7 @@ func TestCreateHandler(t *testing.T) {
|
||||
return
|
||||
}
|
||||
|
||||
if req.Name != "test-model" {
|
||||
if req.Model != "test-model" {
|
||||
t.Errorf("expected model name 'test-model', got %s", req.Name)
|
||||
}
|
||||
|
||||
@@ -555,7 +725,7 @@ func TestCreateHandler(t *testing.T) {
|
||||
}))
|
||||
t.Setenv("OLLAMA_HOST", mockServer.URL)
|
||||
t.Cleanup(mockServer.Close)
|
||||
tempFile, err := os.CreateTemp("", "modelfile")
|
||||
tempFile, err := os.CreateTemp(t.TempDir(), "modelfile")
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@@ -575,7 +745,7 @@ func TestCreateHandler(t *testing.T) {
|
||||
}
|
||||
|
||||
cmd.Flags().Bool("insecure", false, "")
|
||||
cmd.SetContext(context.TODO())
|
||||
cmd.SetContext(t.Context())
|
||||
|
||||
// Redirect stderr to capture progress output
|
||||
oldStderr := os.Stderr
|
||||
@@ -616,3 +786,132 @@ func TestCreateHandler(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestNewCreateRequest(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
from string
|
||||
opts runOptions
|
||||
expected *api.CreateRequest
|
||||
}{
|
||||
{
|
||||
"basic test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "",
|
||||
Prompt: "You are a fun AI agent",
|
||||
Messages: []api.Message{},
|
||||
WordWrap: true,
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "mymodel",
|
||||
Model: "newmodel",
|
||||
},
|
||||
},
|
||||
{
|
||||
"parent model test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "parentmodel",
|
||||
Messages: []api.Message{},
|
||||
WordWrap: true,
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "parentmodel",
|
||||
Model: "newmodel",
|
||||
},
|
||||
},
|
||||
{
|
||||
"parent model as filepath test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "/some/file/like/etc/passwd",
|
||||
Messages: []api.Message{},
|
||||
WordWrap: true,
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "mymodel",
|
||||
Model: "newmodel",
|
||||
},
|
||||
},
|
||||
{
|
||||
"parent model as windows filepath test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "D:\\some\\file\\like\\etc\\passwd",
|
||||
Messages: []api.Message{},
|
||||
WordWrap: true,
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "mymodel",
|
||||
Model: "newmodel",
|
||||
},
|
||||
},
|
||||
{
|
||||
"options test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "parentmodel",
|
||||
Options: map[string]any{
|
||||
"temperature": 1.0,
|
||||
},
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "parentmodel",
|
||||
Model: "newmodel",
|
||||
Parameters: map[string]any{
|
||||
"temperature": 1.0,
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
"messages test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "parentmodel",
|
||||
System: "You are a fun AI agent",
|
||||
Messages: []api.Message{
|
||||
{
|
||||
Role: "user",
|
||||
Content: "hello there!",
|
||||
},
|
||||
{
|
||||
Role: "assistant",
|
||||
Content: "hello to you!",
|
||||
},
|
||||
},
|
||||
WordWrap: true,
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "parentmodel",
|
||||
Model: "newmodel",
|
||||
System: "You are a fun AI agent",
|
||||
Messages: []api.Message{
|
||||
{
|
||||
Role: "user",
|
||||
Content: "hello there!",
|
||||
},
|
||||
{
|
||||
Role: "assistant",
|
||||
Content: "hello to you!",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
actual := NewCreateRequest(tt.from, tt.opts)
|
||||
if !cmp.Equal(actual, tt.expected) {
|
||||
t.Errorf("expected output %#v, got %#v", tt.expected, actual)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -18,6 +18,7 @@ import (
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/readline"
|
||||
"github.com/ollama/ollama/types/errtypes"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
)
|
||||
|
||||
type MultilineState int
|
||||
@@ -43,7 +44,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
fmt.Fprintln(os.Stderr, "Use \"\"\" to begin a multi-line message.")
|
||||
|
||||
if opts.MultiModal {
|
||||
fmt.Fprintf(os.Stderr, "Use %s to include .jpg or .png images.\n", filepath.FromSlash("/path/to/file"))
|
||||
fmt.Fprintf(os.Stderr, "Use %s to include .jpg, .png, or .webp images.\n", filepath.FromSlash("/path/to/file"))
|
||||
}
|
||||
|
||||
fmt.Fprintln(os.Stderr, "")
|
||||
@@ -61,6 +62,8 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
fmt.Fprintln(os.Stderr, " /set noformat Disable formatting")
|
||||
fmt.Fprintln(os.Stderr, " /set verbose Show LLM stats")
|
||||
fmt.Fprintln(os.Stderr, " /set quiet Disable LLM stats")
|
||||
fmt.Fprintln(os.Stderr, " /set think Enable thinking")
|
||||
fmt.Fprintln(os.Stderr, " /set nothink Disable thinking")
|
||||
fmt.Fprintln(os.Stderr, "")
|
||||
}
|
||||
|
||||
@@ -127,6 +130,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
|
||||
var sb strings.Builder
|
||||
var multiline MultilineState
|
||||
var thinkExplicitlySet bool = opts.Think != nil
|
||||
|
||||
for {
|
||||
line, err := scanner.Readline()
|
||||
@@ -194,7 +198,19 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
opts.Model = args[1]
|
||||
opts.Messages = []api.Message{}
|
||||
fmt.Printf("Loading model '%s'\n", opts.Model)
|
||||
opts.Think, err = inferThinkingOption(nil, &opts, thinkExplicitlySet)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if err := loadOrUnloadModel(cmd, &opts); err != nil {
|
||||
if strings.Contains(err.Error(), "not found") {
|
||||
fmt.Printf("error: %v\n", err)
|
||||
continue
|
||||
}
|
||||
if strings.Contains(err.Error(), "does not support thinking") {
|
||||
fmt.Printf("error: %v\n", err)
|
||||
continue
|
||||
}
|
||||
return err
|
||||
}
|
||||
continue
|
||||
@@ -255,6 +271,22 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
return err
|
||||
}
|
||||
fmt.Println("Set 'quiet' mode.")
|
||||
case "think":
|
||||
think := true
|
||||
opts.Think = &think
|
||||
thinkExplicitlySet = true
|
||||
if client, err := api.ClientFromEnvironment(); err == nil {
|
||||
ensureThinkingSupport(cmd.Context(), client, opts.Model)
|
||||
}
|
||||
fmt.Println("Set 'think' mode.")
|
||||
case "nothink":
|
||||
think := false
|
||||
opts.Think = &think
|
||||
thinkExplicitlySet = true
|
||||
if client, err := api.ClientFromEnvironment(); err == nil {
|
||||
ensureThinkingSupport(cmd.Context(), client, opts.Model)
|
||||
}
|
||||
fmt.Println("Set 'nothink' mode.")
|
||||
case "format":
|
||||
if len(args) < 3 || args[2] != "json" {
|
||||
fmt.Println("Invalid or missing format. For 'json' mode use '/set format json'")
|
||||
@@ -343,7 +375,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
|
||||
switch args[1] {
|
||||
case "info":
|
||||
_ = showInfo(resp, os.Stderr)
|
||||
_ = showInfo(resp, false, os.Stderr)
|
||||
case "license":
|
||||
if resp.License == "" {
|
||||
fmt.Println("No license was specified for this model.")
|
||||
@@ -443,6 +475,11 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
|
||||
assistant, err := chat(cmd, opts)
|
||||
if err != nil {
|
||||
if strings.Contains(err.Error(), "does not support thinking") {
|
||||
fmt.Printf("error: %v\n", err)
|
||||
sb.Reset()
|
||||
continue
|
||||
}
|
||||
return err
|
||||
}
|
||||
if assistant != nil {
|
||||
@@ -455,9 +492,16 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
}
|
||||
|
||||
func NewCreateRequest(name string, opts runOptions) *api.CreateRequest {
|
||||
parentModel := opts.ParentModel
|
||||
|
||||
modelName := model.ParseName(parentModel)
|
||||
if !modelName.IsValid() {
|
||||
parentModel = ""
|
||||
}
|
||||
|
||||
req := &api.CreateRequest{
|
||||
Name: name,
|
||||
From: cmp.Or(opts.ParentModel, opts.Model),
|
||||
Model: name,
|
||||
From: cmp.Or(parentModel, opts.Model),
|
||||
}
|
||||
|
||||
if opts.System != "" {
|
||||
@@ -491,6 +535,7 @@ func normalizeFilePath(fp string) string {
|
||||
"\\\\", "\\", // Escaped backslash
|
||||
"\\*", "*", // Escaped asterisk
|
||||
"\\?", "?", // Escaped question mark
|
||||
"\\~", "~", // Escaped tilde
|
||||
).Replace(fp)
|
||||
}
|
||||
|
||||
@@ -498,7 +543,7 @@ func extractFileNames(input string) []string {
|
||||
// Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20)
|
||||
// and followed by more characters and a file extension
|
||||
// This will capture non filename strings, but we'll check for file existence to remove mismatches
|
||||
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png)\b`
|
||||
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png|webp)\b`
|
||||
re := regexp.MustCompile(regexPattern)
|
||||
|
||||
return re.FindAllString(input, -1)
|
||||
@@ -518,6 +563,8 @@ func extractFileData(input string) (string, []api.ImageData, error) {
|
||||
return "", imgs, err
|
||||
}
|
||||
fmt.Fprintf(os.Stderr, "Added image '%s'\n", nfp)
|
||||
input = strings.ReplaceAll(input, "'"+nfp+"'", "")
|
||||
input = strings.ReplaceAll(input, "'"+fp+"'", "")
|
||||
input = strings.ReplaceAll(input, fp, "")
|
||||
imgs = append(imgs, data)
|
||||
}
|
||||
@@ -538,7 +585,7 @@ func getImageData(filePath string) ([]byte, error) {
|
||||
}
|
||||
|
||||
contentType := http.DetectContentType(buf)
|
||||
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png"}
|
||||
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png", "image/webp"}
|
||||
if !slices.Contains(allowedTypes, contentType) {
|
||||
return nil, fmt.Errorf("invalid image type: %s", contentType)
|
||||
}
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
package cmd
|
||||
|
||||
import (
|
||||
"os"
|
||||
"path/filepath"
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
@@ -10,14 +12,17 @@ func TestExtractFilenames(t *testing.T) {
|
||||
// Unix style paths
|
||||
input := ` some preamble
|
||||
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2 ./1.svg
|
||||
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG`
|
||||
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG
|
||||
/unescaped space /six.webp inbetween6 /valid\ path/dir/seven.WEBP`
|
||||
res := extractFileNames(input)
|
||||
assert.Len(t, res, 5)
|
||||
assert.Len(t, res, 7)
|
||||
assert.Contains(t, res[0], "one.png")
|
||||
assert.Contains(t, res[1], "two.jpg")
|
||||
assert.Contains(t, res[2], "three.jpeg")
|
||||
assert.Contains(t, res[3], "four.png")
|
||||
assert.Contains(t, res[4], "five.JPG")
|
||||
assert.Contains(t, res[5], "six.webp")
|
||||
assert.Contains(t, res[6], "seven.WEBP")
|
||||
assert.NotContains(t, res[4], '"')
|
||||
assert.NotContains(t, res, "inbetween1")
|
||||
assert.NotContains(t, res, "./1.svg")
|
||||
@@ -28,10 +33,12 @@ func TestExtractFilenames(t *testing.T) {
|
||||
/absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4
|
||||
./relative\ path/five.JPG inbetween5 "./relative with/spaces/six.png inbetween6
|
||||
d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
|
||||
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG some ending
|
||||
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG
|
||||
c:/users/jdoe/eleven.webp inbetween11 c:/program files/someplace/twelve.WebP inbetween12
|
||||
d:\path with\spaces\thirteen.WEBP some ending
|
||||
`
|
||||
res = extractFileNames(input)
|
||||
assert.Len(t, res, 10)
|
||||
assert.Len(t, res, 13)
|
||||
assert.NotContains(t, res, "inbetween2")
|
||||
assert.Contains(t, res[0], "one.png")
|
||||
assert.Contains(t, res[0], "c:")
|
||||
@@ -49,4 +56,31 @@ d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
|
||||
assert.Contains(t, res[8], "d:")
|
||||
assert.Contains(t, res[9], "ten.PNG")
|
||||
assert.Contains(t, res[9], "E:")
|
||||
assert.Contains(t, res[10], "eleven.webp")
|
||||
assert.Contains(t, res[10], "c:")
|
||||
assert.Contains(t, res[11], "twelve.WebP")
|
||||
assert.Contains(t, res[11], "c:")
|
||||
assert.Contains(t, res[12], "thirteen.WEBP")
|
||||
assert.Contains(t, res[12], "d:")
|
||||
}
|
||||
|
||||
// Ensure that file paths wrapped in single quotes are removed with the quotes.
|
||||
func TestExtractFileDataRemovesQuotedFilepath(t *testing.T) {
|
||||
dir := t.TempDir()
|
||||
fp := filepath.Join(dir, "img.jpg")
|
||||
data := make([]byte, 600)
|
||||
copy(data, []byte{
|
||||
0xff, 0xd8, 0xff, 0xe0, 0x00, 0x10, 'J', 'F', 'I', 'F',
|
||||
0x00, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0xff, 0xd9,
|
||||
})
|
||||
if err := os.WriteFile(fp, data, 0o600); err != nil {
|
||||
t.Fatalf("failed to write test image: %v", err)
|
||||
}
|
||||
|
||||
input := "before '" + fp + "' after"
|
||||
cleaned, imgs, err := extractFileData(input)
|
||||
assert.NoError(t, err)
|
||||
assert.Len(t, imgs, 1)
|
||||
assert.Equal(t, cleaned, "before after")
|
||||
}
|
||||
|
||||
@@ -4,7 +4,7 @@ import (
|
||||
"fmt"
|
||||
"os"
|
||||
|
||||
"github.com/ollama/ollama/llama/runner"
|
||||
"github.com/ollama/ollama/runner"
|
||||
)
|
||||
|
||||
func main() {
|
||||
|
||||
@@ -5,7 +5,7 @@ import (
|
||||
"errors"
|
||||
"os"
|
||||
"os/exec"
|
||||
"strings"
|
||||
"regexp"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
@@ -19,11 +19,12 @@ func startApp(ctx context.Context, client *api.Client) error {
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if !strings.Contains(link, "Ollama.app") {
|
||||
r := regexp.MustCompile(`^.*/Ollama\s?\d*.app`)
|
||||
m := r.FindStringSubmatch(link)
|
||||
if len(m) != 1 {
|
||||
return errors.New("could not find ollama app")
|
||||
}
|
||||
path := strings.Split(link, "Ollama.app")
|
||||
if err := exec.Command("/usr/bin/open", "-a", path[0]+"Ollama.app").Run(); err != nil {
|
||||
if err := exec.Command("/usr/bin/open", "-j", "-a", m[0], "--args", "--fast-startup").Run(); err != nil {
|
||||
return err
|
||||
}
|
||||
return waitForServer(ctx, client)
|
||||
|
||||
@@ -4,17 +4,27 @@ import (
|
||||
"context"
|
||||
"errors"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"os/exec"
|
||||
"path"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
"syscall"
|
||||
"unsafe"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"golang.org/x/sys/windows"
|
||||
)
|
||||
|
||||
const (
|
||||
Installer = "OllamaSetup.exe"
|
||||
)
|
||||
|
||||
func startApp(ctx context.Context, client *api.Client) error {
|
||||
// log.Printf("XXX Attempting to find and start ollama app")
|
||||
if len(isProcRunning(Installer)) > 0 {
|
||||
return fmt.Errorf("upgrade in progress...")
|
||||
}
|
||||
AppName := "ollama app.exe"
|
||||
exe, err := os.Executable()
|
||||
if err != nil {
|
||||
@@ -35,14 +45,11 @@ func startApp(ctx context.Context, client *api.Client) error {
|
||||
}
|
||||
}
|
||||
}
|
||||
// log.Printf("XXX attempting to start app %s", appExe)
|
||||
|
||||
cmd_path := "c:\\Windows\\system32\\cmd.exe"
|
||||
cmd := exec.Command(cmd_path, "/c", appExe)
|
||||
// TODO - these hide flags aren't working - still pops up a command window for some reason
|
||||
cmd := exec.Command(cmd_path, "/c", appExe, "--hide", "--fast-startup")
|
||||
cmd.SysProcAttr = &syscall.SysProcAttr{CreationFlags: 0x08000000, HideWindow: true}
|
||||
|
||||
// TODO this didn't help either...
|
||||
cmd.Stdin = strings.NewReader("")
|
||||
cmd.Stdout = os.Stdout
|
||||
cmd.Stderr = os.Stderr
|
||||
@@ -56,3 +63,50 @@ func startApp(ctx context.Context, client *api.Client) error {
|
||||
}
|
||||
return waitForServer(ctx, client)
|
||||
}
|
||||
|
||||
func isProcRunning(procName string) []uint32 {
|
||||
pids := make([]uint32, 2048)
|
||||
var ret uint32
|
||||
if err := windows.EnumProcesses(pids, &ret); err != nil || ret == 0 {
|
||||
slog.Debug("failed to check for running installers", "error", err)
|
||||
return nil
|
||||
}
|
||||
if ret > uint32(len(pids)) {
|
||||
pids = make([]uint32, ret+10)
|
||||
if err := windows.EnumProcesses(pids, &ret); err != nil || ret == 0 {
|
||||
slog.Debug("failed to check for running installers", "error", err)
|
||||
return nil
|
||||
}
|
||||
}
|
||||
if ret < uint32(len(pids)) {
|
||||
pids = pids[:ret]
|
||||
}
|
||||
var matches []uint32
|
||||
for _, pid := range pids {
|
||||
if pid == 0 {
|
||||
continue
|
||||
}
|
||||
hProcess, err := windows.OpenProcess(windows.PROCESS_QUERY_INFORMATION|windows.PROCESS_VM_READ, false, pid)
|
||||
if err != nil {
|
||||
continue
|
||||
}
|
||||
defer windows.CloseHandle(hProcess)
|
||||
var module windows.Handle
|
||||
var cbNeeded uint32
|
||||
cb := (uint32)(unsafe.Sizeof(module))
|
||||
if err := windows.EnumProcessModules(hProcess, &module, cb, &cbNeeded); err != nil {
|
||||
continue
|
||||
}
|
||||
var sz uint32 = 1024 * 8
|
||||
moduleName := make([]uint16, sz)
|
||||
cb = uint32(len(moduleName)) * (uint32)(unsafe.Sizeof(uint16(0)))
|
||||
if err := windows.GetModuleBaseName(hProcess, module, &moduleName[0], cb); err != nil && err != syscall.ERROR_INSUFFICIENT_BUFFER {
|
||||
continue
|
||||
}
|
||||
exeFile := path.Base(strings.ToLower(syscall.UTF16ToString(moduleName)))
|
||||
if strings.EqualFold(exeFile, procName) {
|
||||
matches = append(matches, pid)
|
||||
}
|
||||
}
|
||||
return matches
|
||||
}
|
||||
|
||||
63
cmd/warn_thinking_test.go
Normal file
63
cmd/warn_thinking_test.go
Normal file
@@ -0,0 +1,63 @@
|
||||
package cmd
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"io"
|
||||
"net/http"
|
||||
"net/http/httptest"
|
||||
"os"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
)
|
||||
|
||||
// Test that a warning is printed when thinking is requested but not supported.
|
||||
func TestWarnMissingThinking(t *testing.T) {
|
||||
cases := []struct {
|
||||
capabilities []model.Capability
|
||||
expectWarn bool
|
||||
}{
|
||||
{capabilities: []model.Capability{model.CapabilityThinking}, expectWarn: false},
|
||||
{capabilities: []model.Capability{}, expectWarn: true},
|
||||
}
|
||||
|
||||
for _, tc := range cases {
|
||||
srv := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
if r.URL.Path != "/api/show" || r.Method != http.MethodPost {
|
||||
t.Fatalf("unexpected request to %s %s", r.URL.Path, r.Method)
|
||||
}
|
||||
var req api.ShowRequest
|
||||
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
|
||||
t.Fatalf("decode request: %v", err)
|
||||
}
|
||||
resp := api.ShowResponse{Capabilities: tc.capabilities}
|
||||
if err := json.NewEncoder(w).Encode(resp); err != nil {
|
||||
t.Fatalf("encode response: %v", err)
|
||||
}
|
||||
}))
|
||||
defer srv.Close()
|
||||
|
||||
t.Setenv("OLLAMA_HOST", srv.URL)
|
||||
client, err := api.ClientFromEnvironment()
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
oldStderr := os.Stderr
|
||||
r, w, _ := os.Pipe()
|
||||
os.Stderr = w
|
||||
ensureThinkingSupport(t.Context(), client, "m")
|
||||
w.Close()
|
||||
os.Stderr = oldStderr
|
||||
out, _ := io.ReadAll(r)
|
||||
|
||||
warned := strings.Contains(string(out), "warning:")
|
||||
if tc.expectWarn && !warned {
|
||||
t.Errorf("expected warning, got none")
|
||||
}
|
||||
if !tc.expectWarn && warned {
|
||||
t.Errorf("did not expect warning, got: %s", string(out))
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,20 +1,26 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"io/fs"
|
||||
"log/slog"
|
||||
"os"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type ModelParameters struct {
|
||||
Architectures []string `json:"architectures"`
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
|
||||
TextModel struct {
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
} `json:"text_config"`
|
||||
}
|
||||
|
||||
type AdapterParameters struct {
|
||||
@@ -27,8 +33,8 @@ type AdapterParameters struct {
|
||||
} `json:"lora_parameters"`
|
||||
}
|
||||
|
||||
func (ModelParameters) KV(t *Tokenizer) llm.KV {
|
||||
kv := llm.KV{
|
||||
func (ModelParameters) KV(t *Tokenizer) ggml.KV {
|
||||
kv := ggml.KV{
|
||||
"general.file_type": uint32(1),
|
||||
"general.quantization_version": uint32(2),
|
||||
"tokenizer.ggml.pre": t.Pre,
|
||||
@@ -47,14 +53,17 @@ func (ModelParameters) KV(t *Tokenizer) llm.KV {
|
||||
}
|
||||
|
||||
for _, sv := range t.SpecialVocabulary {
|
||||
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
|
||||
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
|
||||
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
|
||||
if len(sv.IDs) > 0 {
|
||||
kv[fmt.Sprintf("tokenizer.ggml.%s_token_ids", sv.Key())] = sv.IDs
|
||||
}
|
||||
}
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p AdapterParameters) KV() llm.KV {
|
||||
func (p AdapterParameters) KV() ggml.KV {
|
||||
var alpha float32
|
||||
if p.LoraParameters.Alpha == 0 {
|
||||
alpha = float32(p.Alpha)
|
||||
@@ -62,7 +71,7 @@ func (p AdapterParameters) KV() llm.KV {
|
||||
alpha = p.LoraParameters.Alpha
|
||||
}
|
||||
|
||||
kv := llm.KV{
|
||||
kv := ggml.KV{
|
||||
"adapter.lora.alpha": alpha,
|
||||
"adapter.type": "lora",
|
||||
"general.file_type": uint32(1),
|
||||
@@ -79,27 +88,17 @@ func (ModelParameters) specialTokenTypes() []string {
|
||||
}
|
||||
}
|
||||
|
||||
func (ModelParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
|
||||
return llm.WriteGGUF(ws, kv, ts)
|
||||
}
|
||||
|
||||
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
|
||||
return llm.WriteGGUF(ws, kv, ts)
|
||||
}
|
||||
|
||||
type ModelConverter interface {
|
||||
// KV maps parameters to LLM key-values
|
||||
KV(*Tokenizer) llm.KV
|
||||
KV(*Tokenizer) ggml.KV
|
||||
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
|
||||
Tensors([]Tensor) []llm.Tensor
|
||||
Tensors([]Tensor) []*ggml.Tensor
|
||||
// Replacements returns a list of string pairs to replace in tensor names.
|
||||
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||
Replacements() []string
|
||||
|
||||
// specialTokenTypes returns any special token types the model uses
|
||||
specialTokenTypes() []string
|
||||
// writeFile writes the model to the provided io.WriteSeeker
|
||||
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
|
||||
}
|
||||
|
||||
type moreParser interface {
|
||||
@@ -108,17 +107,15 @@ type moreParser interface {
|
||||
|
||||
type AdapterConverter interface {
|
||||
// KV maps parameters to LLM key-values
|
||||
KV(llm.KV) llm.KV
|
||||
KV(ggml.KV) ggml.KV
|
||||
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
|
||||
Tensors([]Tensor) []llm.Tensor
|
||||
Tensors([]Tensor) []*ggml.Tensor
|
||||
// Replacements returns a list of string pairs to replace in tensor names.
|
||||
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||
Replacements() []string
|
||||
|
||||
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
|
||||
}
|
||||
|
||||
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
|
||||
func ConvertAdapter(fsys fs.FS, f *os.File, baseKV ggml.KV) error {
|
||||
bts, err := fs.ReadFile(fsys, "adapter_config.json")
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -153,14 +150,14 @@ func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
|
||||
return err
|
||||
}
|
||||
|
||||
return conv.writeFile(ws, conv.KV(baseKV), conv.Tensors(ts))
|
||||
return writeFile(f, conv.KV(baseKV), conv.Tensors(ts))
|
||||
}
|
||||
|
||||
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
|
||||
// and files it finds in the input path.
|
||||
// Supported input model formats include safetensors.
|
||||
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
|
||||
func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
func ConvertModel(fsys fs.FS, f *os.File) error {
|
||||
bts, err := fs.ReadFile(fsys, "config.json")
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -177,24 +174,34 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
|
||||
var conv ModelConverter
|
||||
switch p.Architectures[0] {
|
||||
case "LlamaForCausalLM", "MistralForCausalLM":
|
||||
case "LlamaForCausalLM":
|
||||
conv = &llamaModel{}
|
||||
case "MllamaForConditionalGeneration":
|
||||
conv = &mllamaModel{}
|
||||
case "Llama4ForConditionalGeneration":
|
||||
conv = &llama4Model{}
|
||||
case "Mistral3ForConditionalGeneration":
|
||||
conv = &mistral3Model{}
|
||||
case "MixtralForCausalLM":
|
||||
conv = &mixtralModel{}
|
||||
case "GemmaForCausalLM":
|
||||
conv = &gemmaModel{}
|
||||
case "Gemma2ForCausalLM":
|
||||
conv = &gemma2Model{}
|
||||
case "Gemma3ForCausalLM", "Gemma3ForConditionalGeneration":
|
||||
conv = &gemma3Model{Architecture: p.Architectures[0]}
|
||||
case "Phi3ForCausalLM":
|
||||
conv = &phi3Model{}
|
||||
case "Qwen2ForCausalLM":
|
||||
conv = &qwen2Model{}
|
||||
case "Qwen2_5_VLForConditionalGeneration":
|
||||
conv = &qwen25VLModel{}
|
||||
case "BertModel":
|
||||
conv = &bertModel{}
|
||||
case "CohereForCausalLM":
|
||||
conv = &commandrModel{}
|
||||
default:
|
||||
return errors.New("unsupported architecture")
|
||||
return fmt.Errorf("unsupported architecture %q", p.Architectures[0])
|
||||
}
|
||||
|
||||
if err := json.Unmarshal(bts, conv); err != nil {
|
||||
@@ -212,17 +219,22 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
return err
|
||||
}
|
||||
|
||||
vocabSize := int(p.VocabSize)
|
||||
vocabSize := int(cmp.Or(p.VocabSize, p.TextModel.VocabSize))
|
||||
|
||||
switch {
|
||||
case vocabSize == 0:
|
||||
slog.Debug("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
|
||||
case vocabSize > len(t.Vocabulary.Tokens):
|
||||
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
|
||||
slog.Debug("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
|
||||
for i := range vocabSize - len(t.Vocabulary.Tokens) {
|
||||
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
|
||||
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
|
||||
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
|
||||
}
|
||||
case vocabSize < len(t.Vocabulary.Tokens):
|
||||
return fmt.Errorf("vocabulary is larger than expected '%d' instead of '%d'", len(t.Vocabulary.Tokens), vocabSize)
|
||||
slog.Debug("vocabulary is larger than expected", "want", vocabSize, "got", len(t.Vocabulary.Tokens))
|
||||
p.VocabSize = uint32(len(t.Vocabulary.Tokens))
|
||||
p.TextModel.VocabSize = uint32(len(t.Vocabulary.Tokens))
|
||||
default:
|
||||
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
|
||||
}
|
||||
@@ -232,5 +244,13 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
return err
|
||||
}
|
||||
|
||||
return conv.writeFile(ws, conv.KV(t), conv.Tensors(ts))
|
||||
return writeFile(f, conv.KV(t), conv.Tensors(ts))
|
||||
}
|
||||
|
||||
func writeFile(f *os.File, kv ggml.KV, ts []*ggml.Tensor) error {
|
||||
for i := range ts {
|
||||
ts[i].Shape = slices.Clone(ts[i].Shape)
|
||||
slices.Reverse(ts[i].Shape)
|
||||
}
|
||||
return ggml.WriteGGUF(f, kv, ts)
|
||||
}
|
||||
|
||||
@@ -8,7 +8,7 @@ import (
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type bertModel struct {
|
||||
@@ -85,7 +85,7 @@ func (p *bertModel) parseMore(fsys fs.FS) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
func (p *bertModel) KV(t *Tokenizer) llm.KV {
|
||||
func (p *bertModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "bert"
|
||||
kv["bert.attention.causal"] = false
|
||||
@@ -132,8 +132,8 @@ func (p *bertModel) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *bertModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
for _, t := range ts {
|
||||
if slices.Contains([]string{
|
||||
"embeddings.position_ids",
|
||||
@@ -143,7 +143,7 @@ func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
continue
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
||||
@@ -3,7 +3,7 @@ package convert
|
||||
import (
|
||||
"cmp"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type commandrModel struct {
|
||||
@@ -24,7 +24,7 @@ type commandrModel struct {
|
||||
|
||||
var _ ModelConverter = (*commandrModel)(nil)
|
||||
|
||||
func (p *commandrModel) KV(t *Tokenizer) llm.KV {
|
||||
func (p *commandrModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "command-r"
|
||||
kv["general.name"] = "command-r"
|
||||
@@ -43,10 +43,10 @@ func (p *commandrModel) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *commandrModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *commandrModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
for _, t := range ts {
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
||||
@@ -6,7 +6,7 @@ import (
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type gemmaModel struct {
|
||||
@@ -23,7 +23,7 @@ type gemmaModel struct {
|
||||
|
||||
var _ ModelConverter = (*gemmaModel)(nil)
|
||||
|
||||
func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
|
||||
func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "gemma"
|
||||
kv["gemma.context_length"] = p.MaxPositionEmbeddings
|
||||
@@ -42,14 +42,14 @@ func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *gemmaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
for _, t := range ts {
|
||||
if strings.HasSuffix(t.Name(), "_norm.weight") {
|
||||
if !strings.HasPrefix(t.Name(), "v.") && strings.HasSuffix(t.Name(), "_norm.weight") {
|
||||
t.SetRepacker(p.addOne)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
import "github.com/ollama/ollama/fs/ggml"
|
||||
|
||||
type gemma2Model struct {
|
||||
gemmaModel
|
||||
@@ -11,7 +9,7 @@ type gemma2Model struct {
|
||||
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
||||
}
|
||||
|
||||
func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
|
||||
func (p *gemma2Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "gemma2"
|
||||
kv["gemma2.context_length"] = p.MaxPositionEmbeddings
|
||||
|
||||
@@ -6,7 +6,7 @@ import (
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type gemma2Adapter struct {
|
||||
@@ -15,14 +15,14 @@ type gemma2Adapter struct {
|
||||
|
||||
var _ AdapterConverter = (*gemma2Adapter)(nil)
|
||||
|
||||
func (p *gemma2Adapter) KV(baseKV llm.KV) llm.KV {
|
||||
func (p *gemma2Adapter) KV(baseKV ggml.KV) ggml.KV {
|
||||
kv := p.AdapterParameters.KV()
|
||||
kv["general.architecture"] = "gemma2"
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *gemma2Adapter) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
for _, t := range ts {
|
||||
shape := t.Shape()
|
||||
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||
@@ -31,7 +31,7 @@ func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
||||
142
convert/convert_gemma3.go
Normal file
142
convert/convert_gemma3.go
Normal file
@@ -0,0 +1,142 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type gemma3Model struct {
|
||||
gemmaModel
|
||||
Architecture string
|
||||
TextModel struct {
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
} `json:"text_config"`
|
||||
VisionModel struct {
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"` // attention.head_count 16
|
||||
LayerNormEpsilon float32 `json:"layer_norm_eps"` // attention.layer_norm_epsilon 1e-05
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"` // block_count 32
|
||||
HiddenSize uint32 `json:"hidden_size"` // embedding_length 1280
|
||||
IntermediateSize uint32 `json:"intermediate_size"` // feed_forward_length 5120
|
||||
ImageSize uint32 `json:"image_size"` // image_size 560
|
||||
NumChannels uint32 `json:"num_channels"` // num_channels 3
|
||||
PatchSize uint32 `json:"patch_size"` // patch_size 14
|
||||
} `json:"vision_config"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
||||
RopeLocalTheta float32 `json:"rope_local_base_freq"`
|
||||
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
|
||||
}
|
||||
|
||||
const (
|
||||
gemma4BLayerCount = 34
|
||||
gemma12BLayerCount = 48
|
||||
gemma27BLayerCount = 62
|
||||
)
|
||||
|
||||
func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "gemma3"
|
||||
|
||||
numBlocks := cmp.Or(p.HiddenLayers, p.TextModel.HiddenLayers)
|
||||
kv["gemma3.block_count"] = numBlocks
|
||||
|
||||
var (
|
||||
numHeads uint32
|
||||
numKVHeads uint32
|
||||
)
|
||||
|
||||
switch numBlocks {
|
||||
case gemma4BLayerCount:
|
||||
numHeads = 8
|
||||
numKVHeads = 4
|
||||
case gemma12BLayerCount:
|
||||
numHeads = 16
|
||||
numKVHeads = 8
|
||||
case gemma27BLayerCount:
|
||||
numHeads = 32
|
||||
numKVHeads = 16
|
||||
default:
|
||||
numHeads = p.NumAttentionHeads
|
||||
numKVHeads = p.NumKeyValueHeads
|
||||
}
|
||||
|
||||
kv["gemma3.attention.head_count"] = numHeads
|
||||
kv["gemma3.attention.head_count_kv"] = numKVHeads
|
||||
|
||||
switch p.Architecture {
|
||||
case "Gemma3ForCausalLM":
|
||||
kv["gemma3.context_length"] = p.MaxPositionEmbeddings
|
||||
kv["gemma3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||
kv["gemma3.attention.key_length"] = p.HeadDim
|
||||
kv["gemma3.attention.value_length"] = p.HeadDim
|
||||
kv["gemma3.attention.sliding_window"] = p.SlidingWindow
|
||||
kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30)
|
||||
kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0)
|
||||
kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0)
|
||||
kv["gemma3.embedding_length"] = p.HiddenSize
|
||||
kv["gemma3.feed_forward_length"] = p.IntermediateSize
|
||||
default:
|
||||
kv["gemma3.context_length"] = cmp.Or(p.MaxPositionEmbeddings, 131072)
|
||||
kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
|
||||
kv["gemma3.feed_forward_length"] = p.TextModel.IntermediateSize
|
||||
kv["gemma3.attention.sliding_window"] = p.TextModel.SlidingWindow
|
||||
kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||
kv["gemma3.vision.embedding_length"] = p.VisionModel.HiddenSize
|
||||
kv["gemma3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
||||
kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
|
||||
kv["gemma3.vision.patch_size"] = p.VisionModel.PatchSize
|
||||
kv["gemma3.vision.num_channels"] = cmp.Or(p.VisionModel.NumChannels, 3)
|
||||
kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||
kv["gemma3.vision.attention.layer_norm_epsilon"] = cmp.Or(p.VisionModel.LayerNormEpsilon, 1e-6)
|
||||
kv["gemma3.attention.key_length"] = cmp.Or(p.TextModel.HeadDim, 256)
|
||||
kv["gemma3.attention.value_length"] = cmp.Or(p.TextModel.HeadDim, 256)
|
||||
}
|
||||
|
||||
if p.MultiModalTokensPerImage > 0 {
|
||||
kv["gemma3.mm.tokens_per_image"] = p.MultiModalTokensPerImage
|
||||
}
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemma3Model) Replacements() []string {
|
||||
return []string{
|
||||
"lm_head", "output",
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.norm", "output_norm",
|
||||
"vision_tower.vision_model.embeddings", "v",
|
||||
"vision_tower.vision_model", "v",
|
||||
"vision_model.vision_model.embeddings", "v",
|
||||
"vision_model.vision_model", "v",
|
||||
"language_model.", "",
|
||||
"model.layers", "blk",
|
||||
"encoder.layers", "blk",
|
||||
"input_layernorm", "attn_norm",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.q_norm", "attn_q_norm",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.k_norm", "attn_k_norm",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"self_attn.out_proj", "attn_output",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"post_attention_layernorm", "post_attention_norm",
|
||||
"pre_feedforward_layernorm", "ffn_norm",
|
||||
"post_feedforward_layernorm", "post_ffw_norm",
|
||||
"input_projection_weight", "input_projection.weight",
|
||||
"multi_modal_projector", "mm",
|
||||
}
|
||||
}
|
||||
@@ -9,7 +9,7 @@ import (
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type llamaModel struct {
|
||||
@@ -28,12 +28,12 @@ type llamaModel struct {
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
RopeScaling struct {
|
||||
Type string `json:"type"`
|
||||
RopeType string `json:"rope_type"`
|
||||
Factor float32 `json:"factor"`
|
||||
LowFrequencyFactor float32 `json:"low_freq_factor"`
|
||||
HighFrequencyFactor float32 `json:"high_freq_factor"`
|
||||
OriginalMaxPositionalEmbeddings uint32 `json:"original_max_positional_embeddings"`
|
||||
Type string `json:"type"`
|
||||
RopeType string `json:"rope_type"`
|
||||
Factor float32 `json:"factor"`
|
||||
LowFrequencyFactor float32 `json:"low_freq_factor"`
|
||||
HighFrequencyFactor float32 `json:"high_freq_factor"`
|
||||
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
||||
|
||||
factors ropeFactor
|
||||
} `json:"rope_scaling"`
|
||||
@@ -42,11 +42,13 @@ type llamaModel struct {
|
||||
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
|
||||
NormEpsilon float32 `json:"norm_epsilon"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
|
||||
skipRepack bool
|
||||
}
|
||||
|
||||
var _ ModelConverter = (*llamaModel)(nil)
|
||||
|
||||
func (p *llamaModel) KV(t *Tokenizer) llm.KV {
|
||||
func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "llama"
|
||||
kv["llama.vocab_size"] = p.VocabSize
|
||||
@@ -70,6 +72,10 @@ func (p *llamaModel) KV(t *Tokenizer) llm.KV {
|
||||
kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
|
||||
}
|
||||
|
||||
if p.HeadDim > 0 {
|
||||
kv["llama.attention.head_dim"] = p.HeadDim
|
||||
}
|
||||
|
||||
if p.RopeTheta > 0 {
|
||||
kv["llama.rope.freq_base"] = p.RopeTheta
|
||||
}
|
||||
@@ -84,7 +90,7 @@ func (p *llamaModel) KV(t *Tokenizer) llm.KV {
|
||||
factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
|
||||
factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)
|
||||
|
||||
original := cmp.Or(p.RopeScaling.OriginalMaxPositionalEmbeddings, 8192)
|
||||
original := cmp.Or(p.RopeScaling.OriginalMaxPositionEmbeddings, 8192)
|
||||
lambdaLow := float32(original) / factorLow
|
||||
lambdaHigh := float32(original) / factorHigh
|
||||
|
||||
@@ -120,11 +126,11 @@ func (p *llamaModel) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *llamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
|
||||
if p.RopeScaling.factors != nil {
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: "rope_freqs.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
|
||||
@@ -133,12 +139,14 @@ func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
}
|
||||
|
||||
for _, t := range ts {
|
||||
if strings.HasSuffix(t.Name(), "attn_q.weight") ||
|
||||
strings.HasSuffix(t.Name(), "attn_k.weight") {
|
||||
t.SetRepacker(p.repack)
|
||||
if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") ||
|
||||
strings.HasSuffix(t.Name(), "attn_q_proj.weight") || strings.HasSuffix(t.Name(), "attn_k_proj.weight") {
|
||||
if !p.skipRepack {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
@@ -174,9 +182,9 @@ func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]floa
|
||||
}
|
||||
|
||||
var heads uint32
|
||||
if strings.HasSuffix(name, "attn_q.weight") {
|
||||
if strings.HasSuffix(name, "attn_q.weight") || strings.HasSuffix(name, "attn_q_proj.weight") {
|
||||
heads = p.NumAttentionHeads
|
||||
} else if strings.HasSuffix(name, "attn_k.weight") {
|
||||
} else if strings.HasSuffix(name, "attn_k.weight") || strings.HasSuffix(name, "attn_k_proj.weight") {
|
||||
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||
} else {
|
||||
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
|
||||
|
||||
169
convert/convert_llama4.go
Normal file
169
convert/convert_llama4.go
Normal file
@@ -0,0 +1,169 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type llama4Model struct {
|
||||
ModelParameters
|
||||
TextModel struct {
|
||||
llamaModel
|
||||
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
|
||||
NumLocalExperts uint32 `json:"num_local_experts"`
|
||||
InterleaveMOELayerStep uint32 `json:"interleave_moe_layer_step"`
|
||||
UseQKNorm bool `json:"use_qk_norm"`
|
||||
IntermediateSizeMLP uint32 `json:"intermediate_size_mlp"`
|
||||
AttentionChunkSize uint32 `json:"attention_chunk_size"`
|
||||
} `json:"text_config"`
|
||||
VisionModel struct {
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
ImageSize uint32 `json:"image_size"`
|
||||
PatchSize uint32 `json:"patch_size"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
NormEpsilon float32 `json:"norm_eps"`
|
||||
PixelShuffleRatio float32 `json:"pixel_shuffle_ratio"`
|
||||
} `json:"vision_config"`
|
||||
}
|
||||
|
||||
// KV implements ModelConverter.
|
||||
func (p *llama4Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "llama4"
|
||||
|
||||
for k, v := range p.TextModel.KV(t) {
|
||||
if strings.HasPrefix(k, "llama.") {
|
||||
kv[strings.ReplaceAll(k, "llama.", "llama4.")] = v
|
||||
}
|
||||
}
|
||||
|
||||
kv["llama4.feed_forward_length"] = p.TextModel.IntermediateSizeMLP
|
||||
kv["llama4.expert_feed_forward_length"] = p.TextModel.IntermediateSize
|
||||
|
||||
kv["llama4.expert_count"] = p.TextModel.NumLocalExperts
|
||||
kv["llama4.expert_used_count"] = p.TextModel.NumExpertsPerToken
|
||||
kv["llama4.interleave_moe_layer_step"] = p.TextModel.InterleaveMOELayerStep
|
||||
kv["llama4.use_qk_norm"] = p.TextModel.UseQKNorm
|
||||
kv["llama4.attention.chunk_size"] = p.TextModel.AttentionChunkSize
|
||||
|
||||
kv["llama4.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||
kv["llama4.vision.embedding_length"] = p.VisionModel.HiddenSize
|
||||
kv["llama4.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
||||
kv["llama4.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||
kv["llama4.vision.image_size"] = p.VisionModel.ImageSize
|
||||
kv["llama4.vision.patch_size"] = p.VisionModel.PatchSize
|
||||
kv["llama4.vision.rope.freq_base"] = p.VisionModel.RopeTheta
|
||||
kv["llama4.vision.layer_norm_epsilon"] = p.VisionModel.NormEpsilon
|
||||
kv["llama4.vision.pixel_shuffle_ratio"] = p.VisionModel.PixelShuffleRatio
|
||||
return kv
|
||||
}
|
||||
|
||||
// Replacements implements ModelConverter.
|
||||
func (p *llama4Model) Replacements() []string {
|
||||
return append(
|
||||
p.TextModel.Replacements(),
|
||||
"language_model.", "",
|
||||
"vision_model", "v",
|
||||
"multi_modal_projector", "mm",
|
||||
"feed_forward.down_proj", "ffn_down",
|
||||
"feed_forward.up_proj", "ffn_up",
|
||||
"feed_forward.gate_proj", "ffn_gate",
|
||||
"feed_forward.", "ffn_",
|
||||
"shared_expert.down_proj", "down_shexp",
|
||||
"shared_expert.gate_proj", "gate_shexp",
|
||||
"shared_expert.up_proj", "up_shexp",
|
||||
"experts.down_proj", "down_exps.weight",
|
||||
"experts.gate_up_proj", "gate_up_exps.weight",
|
||||
"router", "gate_inp",
|
||||
"patch_embedding.linear", "patch_embedding",
|
||||
)
|
||||
}
|
||||
|
||||
// Tensors implements ModelConverter.
|
||||
func (p *llama4Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
|
||||
var textTensors []Tensor
|
||||
for _, t := range ts {
|
||||
if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
} else if strings.Contains(t.Name(), "ffn_gate_up_exps") {
|
||||
// gate and up projectors are fused
|
||||
// dims[1], dims[2] must be swapped
|
||||
// [experts, hidden_size, intermediate_size * 2] --> [experts, intermediate_size, hidden_size]
|
||||
halfDim := int(t.Shape()[2]) / 2
|
||||
|
||||
newShape := slices.Clone(t.Shape())
|
||||
newShape[1], newShape[2] = newShape[2]/2, newShape[1]
|
||||
for i, name := range []string{"ffn_gate_exps", "ffn_up_exps"} {
|
||||
// clone tensor since we need separate repackers
|
||||
tt := t.Clone()
|
||||
tt.SetRepacker(p.repack(nil, nil, tensor.S(i*halfDim, (i+1)*halfDim)))
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: strings.ReplaceAll(tt.Name(), "ffn_gate_up_exps", name),
|
||||
Kind: tt.Kind(),
|
||||
Shape: newShape,
|
||||
WriterTo: tt,
|
||||
})
|
||||
}
|
||||
} else if strings.Contains(t.Name(), "ffn_down_exps") {
|
||||
// dims[1], dims[2] must be swapped
|
||||
// [experts, intermediate_size, hidden_size] --> [experts, hidden_size, intermediate_size]
|
||||
t.SetRepacker(p.repack())
|
||||
newShape := slices.Clone(t.Shape())
|
||||
newShape[1], newShape[2] = newShape[2], newShape[1]
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: newShape,
|
||||
WriterTo: t,
|
||||
})
|
||||
} else {
|
||||
textTensors = append(textTensors, t)
|
||||
}
|
||||
}
|
||||
|
||||
p.TextModel.skipRepack = true
|
||||
out = append(out, p.TextModel.Tensors(textTensors)...)
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *llama4Model) repack(slice ...tensor.Slice) Repacker {
|
||||
return func(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
dims := make([]int, len(shape))
|
||||
for i, dim := range shape {
|
||||
dims[i] = int(dim)
|
||||
}
|
||||
|
||||
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
t, err := t.Slice(slice...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := t.T(0, 2, 1); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
t = tensor.Materialize(t)
|
||||
// flatten tensor so it can be return as a vector
|
||||
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return native.VectorF32(t.(*tensor.Dense))
|
||||
}
|
||||
}
|
||||
@@ -7,7 +7,7 @@ import (
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type llamaAdapter struct {
|
||||
@@ -18,7 +18,7 @@ type llamaAdapter struct {
|
||||
|
||||
var _ AdapterConverter = (*llamaAdapter)(nil)
|
||||
|
||||
func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
|
||||
func (p *llamaAdapter) KV(baseKV ggml.KV) ggml.KV {
|
||||
kv := p.AdapterParameters.KV()
|
||||
kv["general.architecture"] = "llama"
|
||||
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
|
||||
@@ -29,8 +29,8 @@ func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (p *llamaAdapter) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
for _, t := range ts {
|
||||
shape := t.Shape()
|
||||
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||
@@ -41,7 +41,7 @@ func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: shape,
|
||||
|
||||
190
convert/convert_mistral.go
Normal file
190
convert/convert_mistral.go
Normal file
@@ -0,0 +1,190 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"fmt"
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type mistral3Model struct {
|
||||
ModelParameters
|
||||
ImageTokenIndex uint32 `json:"image_token_index"`
|
||||
SpatialMergeSize uint32 `json:"spatial_merge_size"`
|
||||
VisionFeatureLayer int32 `json:"vision_feature_layer"`
|
||||
TextModel struct {
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
SlidingWindow *uint32 `json:"sliding_window"`
|
||||
HiddenAct string `json:"hidden_act"`
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
} `json:"text_config"`
|
||||
VisionModel struct {
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
ImageSize uint32 `json:"image_size"`
|
||||
NumChannels uint32 `json:"num_channels"`
|
||||
PatchSize uint32 `json:"patch_size"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
HiddenAct string `json:"hidden_act"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
} `json:"vision_config"`
|
||||
MultiModalProjectorBias bool `json:"multimodal_projector_bias"`
|
||||
ProjectorHiddenAct string `json:"projector_hidden_act"`
|
||||
}
|
||||
|
||||
func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "mistral3"
|
||||
kv["mistral3.vocab_size"] = p.TextModel.VocabSize
|
||||
|
||||
// Text configuration
|
||||
kv["mistral3.block_count"] = p.TextModel.NumHiddenLayers
|
||||
kv["mistral3.context_length"] = p.TextModel.MaxPositionEmbeddings
|
||||
kv["mistral3.embedding_length"] = p.TextModel.HiddenSize
|
||||
kv["mistral3.feed_forward_length"] = p.TextModel.IntermediateSize
|
||||
kv["mistral3.attention.head_count"] = p.TextModel.NumAttentionHeads
|
||||
kv["mistral3.attention.head_count_kv"] = p.TextModel.NumKeyValueHeads
|
||||
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
|
||||
kv["mistral3.attention.key_length"] = p.TextModel.HeadDim
|
||||
kv["mistral3.attention.value_length"] = p.TextModel.HeadDim
|
||||
kv["mistral3.rope.dimension_count"] = p.TextModel.HiddenSize / p.TextModel.NumHiddenLayers
|
||||
kv["mistral3.rope.freq_base"] = p.TextModel.RopeTheta
|
||||
|
||||
// Vision configuration
|
||||
kv["mistral3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||
kv["mistral3.vision.embedding_length"] = p.VisionModel.HiddenSize
|
||||
kv["mistral3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
||||
kv["mistral3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||
kv["mistral3.vision.attention.key_length"] = p.VisionModel.HeadDim
|
||||
kv["mistral3.vision.image_size"] = p.VisionModel.ImageSize
|
||||
kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize
|
||||
kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels
|
||||
// kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value
|
||||
kv["mistral3.vision.rope.freq_base"] = p.VisionModel.RopeTheta
|
||||
|
||||
// Multimodal configuration
|
||||
kv["mistral3.image_token_index"] = p.ImageTokenIndex
|
||||
kv["mistral3.spatial_merge_size"] = p.SpatialMergeSize
|
||||
|
||||
kv["mistral3.mm.projector_bias"] = p.MultiModalProjectorBias
|
||||
|
||||
if p.ProjectorHiddenAct != "" {
|
||||
kv["mistral3.mm.projector_hidden_act"] = p.ProjectorHiddenAct
|
||||
}
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *mistral3Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
|
||||
for _, t := range ts {
|
||||
if !strings.HasPrefix(t.Name(), "v.") {
|
||||
if strings.HasSuffix(t.Name(), ".attn_q.weight") ||
|
||||
strings.HasSuffix(t.Name(), ".attn_k.weight") {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
}
|
||||
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *mistral3Model) Replacements() []string {
|
||||
return []string{
|
||||
"language_model.model.norm", "output_norm",
|
||||
"language_model.model.", "",
|
||||
"language_model.", "",
|
||||
"layers", "blk",
|
||||
"transformer.layers", "blk",
|
||||
"vision_tower", "v",
|
||||
"ln_pre", "encoder_norm",
|
||||
"input_layernorm", "attn_norm",
|
||||
"post_attention_layernorm", "ffn_norm",
|
||||
"embed_tokens", "token_embd",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"attention.q_proj", "attn_q",
|
||||
"attention.k_proj", "attn_k",
|
||||
"attention.v_proj", "attn_v",
|
||||
"attention.o_proj", "attn_output",
|
||||
"attention_norm", "attn_norm",
|
||||
"feed_forward.gate_proj", "ffn_gate",
|
||||
"feed_forward.down_proj", "ffn_down",
|
||||
"feed_forward.up_proj", "ffn_up",
|
||||
"multi_modal_projector", "mm",
|
||||
"ffn_norm", "ffn_norm",
|
||||
"lm_head", "output",
|
||||
}
|
||||
}
|
||||
|
||||
func (p *mistral3Model) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
var dims []int
|
||||
for _, dim := range shape {
|
||||
dims = append(dims, int(dim))
|
||||
}
|
||||
|
||||
var heads uint32
|
||||
if strings.HasSuffix(name, ".attn_q.weight") {
|
||||
heads = p.TextModel.NumAttentionHeads
|
||||
} else if strings.HasSuffix(name, ".attn_k.weight") {
|
||||
heads = cmp.Or(p.TextModel.NumKeyValueHeads, p.TextModel.NumAttentionHeads)
|
||||
} else {
|
||||
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
|
||||
}
|
||||
|
||||
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.T(0, 2, 1, 3); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Reshape(dims...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ts, err := native.SelectF32(n, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var f32s []float32
|
||||
for _, t := range ts {
|
||||
f32s = append(f32s, t...)
|
||||
}
|
||||
|
||||
return f32s, nil
|
||||
}
|
||||
@@ -6,7 +6,7 @@ import (
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type mixtralModel struct {
|
||||
@@ -15,7 +15,7 @@ type mixtralModel struct {
|
||||
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
|
||||
}
|
||||
|
||||
func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
|
||||
func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.llamaModel.KV(t)
|
||||
|
||||
if p.NumLocalExperts > 0 {
|
||||
@@ -29,7 +29,7 @@ func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
func (p *mixtralModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
oldnew := []string{
|
||||
"model.layers", "blk",
|
||||
"w1", "ffn_gate_exps",
|
||||
@@ -56,10 +56,10 @@ func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
|
||||
return true
|
||||
})
|
||||
|
||||
var out []llm.Tensor
|
||||
var out []*ggml.Tensor
|
||||
for n, e := range experts {
|
||||
// TODO(mxyng): sanity check experts
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: n,
|
||||
Kind: e[0].Kind(),
|
||||
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
|
||||
|
||||
179
convert/convert_mllama.go
Normal file
179
convert/convert_mllama.go
Normal file
@@ -0,0 +1,179 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
)
|
||||
|
||||
type mllamaModel struct {
|
||||
ModelParameters
|
||||
TextModel struct {
|
||||
llamaModel
|
||||
|
||||
CrossAttentionLayers []int32 `json:"cross_attention_layers"`
|
||||
} `json:"text_config"`
|
||||
VisionModel struct {
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
NumGlobalLayers uint32 `json:"num_global_layers"`
|
||||
IntermediateLayersIndices []int32 `json:"intermediate_layers_indices"`
|
||||
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
|
||||
AttentionHeads uint32 `json:"attention_heads"`
|
||||
|
||||
ImageSize uint32 `json:"image_size"`
|
||||
PatchSize uint32 `json:"patch_size"`
|
||||
NumChannels uint32 `json:"num_channels"`
|
||||
MaxNumTiles uint32 `json:"max_num_tiles"`
|
||||
NormEpsilon float32 `json:"norm_eps"`
|
||||
RopeTheta float32 `json:"rope.freq_base"`
|
||||
} `json:"vision_config"`
|
||||
}
|
||||
|
||||
func (m *mllamaModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := m.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "mllama"
|
||||
|
||||
for k, v := range m.TextModel.KV(t) {
|
||||
if strings.HasPrefix(k, "llama.") {
|
||||
kv[strings.ReplaceAll(k, "llama.", "mllama.")] = v
|
||||
}
|
||||
}
|
||||
|
||||
kv["mllama.attention.cross_attention_layers"] = m.TextModel.CrossAttentionLayers
|
||||
|
||||
kv["mllama.vision.block_count"] = m.VisionModel.NumHiddenLayers
|
||||
kv["mllama.vision.global.block_count"] = m.VisionModel.NumGlobalLayers
|
||||
kv["mllama.vision.intermediate_layers_indices"] = m.VisionModel.IntermediateLayersIndices
|
||||
|
||||
kv["mllama.vision.embedding_length"] = m.VisionModel.HiddenSize
|
||||
kv["mllama.vision.feed_forward_length"] = m.VisionModel.IntermediateSize
|
||||
|
||||
kv["mllama.vision.attention.head_count"] = m.VisionModel.AttentionHeads
|
||||
kv["mllama.vision.attention.layer_norm_epsilon"] = m.VisionModel.NormEpsilon
|
||||
|
||||
kv["mllama.vision.image_size"] = m.VisionModel.ImageSize
|
||||
kv["mllama.vision.patch_size"] = m.VisionModel.PatchSize
|
||||
kv["mllama.vision.max_num_tiles"] = m.VisionModel.MaxNumTiles
|
||||
kv["mllama.vision.num_channels"] = m.VisionModel.NumChannels
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (m *mllamaModel) Replacements() []string {
|
||||
return append(
|
||||
m.TextModel.Replacements(),
|
||||
"language_model.", "",
|
||||
"gate_attn", "attn_gate",
|
||||
"gate_ffn", "ffn_gate",
|
||||
"cross_attn.", "cross_attn_",
|
||||
"vision_model", "v",
|
||||
"class_embedding", "class_embd",
|
||||
"patch_embedding", "patch_embd",
|
||||
"gated_positional_embedding.tile_embedding", "tile_position_embd",
|
||||
"gated_positional_embedding.embedding", "position_embd.weight",
|
||||
"gated_positional_embedding", "position_embd",
|
||||
"embedding.weight", "weight",
|
||||
"pre_tile_positional_embedding", "pre_tile_position_embd",
|
||||
"post_tile_positional_embedding", "post_tile_position_embd",
|
||||
"layernorm_pre", "pre_ln",
|
||||
"layernorm_post", "post_ln",
|
||||
"global_transformer.layers", "global.blk",
|
||||
"transformer.layers", "blk",
|
||||
"mlp.fc1", "ffn_up",
|
||||
"mlp.fc2", "ffn_down",
|
||||
"multi_modal_projector", "mm.0",
|
||||
)
|
||||
}
|
||||
|
||||
func (m *mllamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
var text []Tensor
|
||||
for _, t := range ts {
|
||||
if !strings.HasPrefix(t.Name(), "v.") && !strings.HasPrefix(t.Name(), "mm.") {
|
||||
text = append(text, t)
|
||||
} else if t.Name() == "v.position_embd.gate" {
|
||||
for _, name := range []string{"v.position_embd.gate", "v.tile_position_embd.gate"} {
|
||||
tt := t.Clone()
|
||||
tt.SetRepacker(m.repack(name))
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: name,
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: tt,
|
||||
})
|
||||
}
|
||||
} else {
|
||||
if t.Name() == "v.pre_tile_position_embd.gate" || t.Name() == "v.post_tile_position_embd.gate" {
|
||||
t.SetRepacker(m.repack(t.Name()))
|
||||
} else if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") {
|
||||
t.SetRepacker(m.repack(t.Name()))
|
||||
} else if strings.HasSuffix(t.Name(), "attn_gate") || strings.HasSuffix(t.Name(), "ffn_gate") {
|
||||
t.SetRepacker(m.repack(t.Name()))
|
||||
}
|
||||
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
return append(out, m.TextModel.Tensors(text)...)
|
||||
}
|
||||
|
||||
func (m *mllamaModel) repack(name string) Repacker {
|
||||
return func(_ string, data []float32, shape []uint64) (_ []float32, err error) {
|
||||
dims := make([]int, len(shape))
|
||||
for i, dim := range shape {
|
||||
dims[i] = int(dim)
|
||||
}
|
||||
|
||||
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
|
||||
if strings.HasSuffix(name, "attn_q.weight") || strings.HasSuffix(name, "attn_k.weight") {
|
||||
heads := m.VisionModel.AttentionHeads
|
||||
if err := t.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := t.T(0, 2, 1, 3); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := t.Reshape(dims...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := t.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
} else {
|
||||
t, err = tensor.Tanh(t)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if name == "v.position_embd.gate" {
|
||||
t, err = tensor.Sub(float32(1), t)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
t = tensor.Materialize(t)
|
||||
// flatten tensor so it can be return as a vector
|
||||
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return native.VectorF32(t.(*tensor.Dense))
|
||||
}
|
||||
}
|
||||
@@ -8,7 +8,7 @@ import (
|
||||
"strings"
|
||||
"sync"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type phi3Model struct {
|
||||
@@ -37,7 +37,7 @@ type phi3Model struct {
|
||||
|
||||
var _ ModelConverter = (*phi3Model)(nil)
|
||||
|
||||
func (p *phi3Model) KV(t *Tokenizer) llm.KV {
|
||||
func (p *phi3Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "phi3"
|
||||
kv["phi3.context_length"] = p.MaxPositionEmbeddings
|
||||
@@ -68,19 +68,19 @@ func (p *phi3Model) KV(t *Tokenizer) llm.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
|
||||
func (p *phi3Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var addRopeFactors sync.Once
|
||||
|
||||
out := make([]llm.Tensor, 0, len(ts)+2)
|
||||
out := make([]*ggml.Tensor, 0, len(ts)+2)
|
||||
for _, t := range ts {
|
||||
if strings.HasPrefix(t.Name(), "blk.0.") {
|
||||
addRopeFactors.Do(func() {
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: "rope_factors_long.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
|
||||
WriterTo: p.RopeScaling.LongFactor,
|
||||
}, llm.Tensor{
|
||||
}, &ggml.Tensor{
|
||||
Name: "rope_factors_short.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
|
||||
@@ -89,7 +89,7 @@ func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
|
||||
})
|
||||
}
|
||||
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
@@ -118,6 +118,5 @@ func (p *phi3Model) Replacements() []string {
|
||||
type ropeFactor []float32
|
||||
|
||||
func (r ropeFactor) WriteTo(w io.Writer) (int64, error) {
|
||||
err := binary.Write(w, binary.LittleEndian, r)
|
||||
return 0, err
|
||||
return 0, binary.Write(w, binary.LittleEndian, r)
|
||||
}
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
package convert
|
||||
|
||||
import "github.com/ollama/ollama/llm"
|
||||
import "github.com/ollama/ollama/fs/ggml"
|
||||
|
||||
type qwen2Model struct {
|
||||
ModelParameters
|
||||
@@ -15,13 +15,14 @@ type qwen2Model struct {
|
||||
Type string `json:"type"`
|
||||
Factor ropeFactor `json:"factor"`
|
||||
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
||||
MropeSection []int32 `json:"mrope_section"`
|
||||
} `json:"rope_scaling"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
}
|
||||
|
||||
var _ ModelConverter = (*qwen2Model)(nil)
|
||||
|
||||
func (q *qwen2Model) KV(t *Tokenizer) llm.KV {
|
||||
func (q *qwen2Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := q.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "qwen2"
|
||||
kv["qwen2.block_count"] = q.HiddenLayers
|
||||
@@ -39,16 +40,18 @@ func (q *qwen2Model) KV(t *Tokenizer) llm.KV {
|
||||
case "yarn":
|
||||
kv["qwen2.rope.scaling.type"] = q.RopeScaling.Type
|
||||
kv["qwen2.rope.scaling.factor"] = q.RopeScaling.Factor
|
||||
case "mrope", "default":
|
||||
kv["qwen2.rope.mrope_section"] = q.RopeScaling.MropeSection
|
||||
default:
|
||||
panic("unknown rope scaling type")
|
||||
}
|
||||
return kv
|
||||
}
|
||||
|
||||
func (q *qwen2Model) Tensors(ts []Tensor) []llm.Tensor {
|
||||
var out []llm.Tensor
|
||||
func (q *qwen2Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
for _, t := range ts {
|
||||
out = append(out, llm.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
||||
102
convert/convert_qwen25vl.go
Normal file
102
convert/convert_qwen25vl.go
Normal file
@@ -0,0 +1,102 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type qwen25VLModel struct {
|
||||
qwen2Model
|
||||
|
||||
VisionModel struct {
|
||||
Depth uint32 `json:"depth"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
NumHeads uint32 `json:"num_heads"`
|
||||
InChannels uint32 `json:"in_chans"`
|
||||
PatchSize uint32 `json:"patch_size"`
|
||||
SpatialMergeSize uint32 `json:"spatial_merge_size"`
|
||||
SpatialPatchSize uint32 `json:"spatial_patch_size"`
|
||||
WindowSize uint32 `json:"window_size"`
|
||||
RMSNormEps float32 `json:"layer_norm_epsilon"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
FullAttentionBlocks []int32 `json:"fullatt_block_indexes"`
|
||||
TemporalPatchSize uint32 `json:"temporal_patch_size"`
|
||||
} `json:"vision_config"`
|
||||
}
|
||||
|
||||
var _ ModelConverter = (*qwen25VLModel)(nil)
|
||||
|
||||
func (q *qwen25VLModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := q.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "qwen25vl"
|
||||
|
||||
for k, v := range q.qwen2Model.KV(t) {
|
||||
if strings.HasPrefix(k, "qwen2.") {
|
||||
kv[strings.Replace(k, "qwen2.", "qwen25vl.", 1)] = v
|
||||
}
|
||||
}
|
||||
|
||||
if q.VisionModel.FullAttentionBlocks == nil {
|
||||
kv["qwen25vl.vision.fullatt_block_indexes"] = []int32{7, 15, 23, 31}
|
||||
}
|
||||
|
||||
kv["qwen25vl.vision.block_count"] = cmp.Or(q.VisionModel.Depth, 32)
|
||||
kv["qwen25vl.vision.embedding_length"] = q.VisionModel.HiddenSize
|
||||
kv["qwen25vl.vision.attention.head_count"] = cmp.Or(q.VisionModel.NumHeads, 16)
|
||||
kv["qwen25vl.vision.num_channels"] = q.VisionModel.InChannels
|
||||
kv["qwen25vl.vision.patch_size"] = cmp.Or(q.VisionModel.PatchSize, 14)
|
||||
kv["qwen25vl.vision.spatial_merge_size"] = cmp.Or(q.VisionModel.SpatialMergeSize, 2)
|
||||
kv["qwen25vl.vision.spatial_patch_size"] = q.VisionModel.SpatialPatchSize
|
||||
kv["qwen25vl.vision.window_size"] = cmp.Or(q.VisionModel.WindowSize, 112)
|
||||
kv["qwen25vl.vision.attention.layer_norm_epsilon"] = cmp.Or(q.VisionModel.RMSNormEps, 1e-6)
|
||||
kv["qwen25vl.vision.rope.freq_base"] = cmp.Or(q.VisionModel.RopeTheta, 1e4)
|
||||
kv["qwen25vl.vision.fullatt_block_indexes"] = q.VisionModel.FullAttentionBlocks
|
||||
kv["qwen25vl.vision.temporal_patch_size"] = cmp.Or(q.VisionModel.TemporalPatchSize, 2)
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (q *qwen25VLModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
|
||||
for _, t := range ts {
|
||||
if strings.Contains(t.Name(), "patch_embed.proj") {
|
||||
for t := range splitDim(t, 2,
|
||||
split{Replacer: strings.NewReplacer("patch_embed.proj", "patch_embd_0")},
|
||||
split{Replacer: strings.NewReplacer("patch_embed.proj", "patch_embd_1")},
|
||||
) {
|
||||
t.Shape = slices.DeleteFunc(t.Shape, func(i uint64) bool { return i == 1 })
|
||||
out = append(out, t)
|
||||
}
|
||||
} else if strings.Contains(t.Name(), "attn.qkv") {
|
||||
out = append(out, slices.Collect(splitDim(t, 0,
|
||||
split{Replacer: strings.NewReplacer("attn.qkv", "attn_q")},
|
||||
split{Replacer: strings.NewReplacer("attn.qkv", "attn_k")},
|
||||
split{Replacer: strings.NewReplacer("attn.qkv", "attn_v")},
|
||||
))...)
|
||||
} else {
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *qwen25VLModel) Replacements() []string {
|
||||
return append(
|
||||
p.qwen2Model.Replacements(),
|
||||
"visual", "v",
|
||||
"blocks", "blk",
|
||||
"attn.proj", "attn_out",
|
||||
"norm1", "ln1",
|
||||
"norm2", "ln2",
|
||||
)
|
||||
}
|
||||
@@ -11,7 +11,6 @@ import (
|
||||
"io"
|
||||
"io/fs"
|
||||
"log/slog"
|
||||
"math"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"slices"
|
||||
@@ -20,7 +19,7 @@ import (
|
||||
|
||||
"golang.org/x/exp/maps"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type tensorData struct {
|
||||
@@ -29,7 +28,7 @@ type tensorData struct {
|
||||
Shape []int `json:"shape"`
|
||||
}
|
||||
|
||||
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
|
||||
func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
|
||||
t.Helper()
|
||||
|
||||
f, err := os.CreateTemp(t.TempDir(), "f16")
|
||||
@@ -48,7 +47,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
|
||||
}
|
||||
t.Cleanup(func() { r.Close() })
|
||||
|
||||
m, _, err := llm.DecodeGGML(r, math.MaxInt)
|
||||
m, err := ggml.Decode(r, -1)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@@ -60,7 +59,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
|
||||
return r, m.KV(), m.Tensors()
|
||||
}
|
||||
|
||||
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors *llm.Tensors) map[string]string {
|
||||
func generateResultsJSON(t *testing.T, f *os.File, kv ggml.KV, tensors ggml.Tensors) map[string]string {
|
||||
actual := make(map[string]string)
|
||||
for k, v := range kv {
|
||||
if s, ok := v.(json.Marshaler); !ok {
|
||||
@@ -75,7 +74,7 @@ func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors *llm.Tenso
|
||||
}
|
||||
}
|
||||
|
||||
for _, tensor := range tensors.Items {
|
||||
for _, tensor := range tensors.Items() {
|
||||
sha256sum := sha256.New()
|
||||
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
|
||||
if _, err := io.Copy(sha256sum, sr); err != nil {
|
||||
@@ -131,6 +130,7 @@ func TestConvertModel(t *testing.T) {
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer expectFile.Close()
|
||||
|
||||
var expect map[string]string
|
||||
if err := json.NewDecoder(expectFile).Decode(&expect); err != nil {
|
||||
@@ -332,7 +332,7 @@ func TestConvertAdapter(t *testing.T) {
|
||||
}
|
||||
defer r.Close()
|
||||
|
||||
m, _, err := llm.DecodeGGML(r, math.MaxInt)
|
||||
m, err := ggml.Decode(r, -1)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -1,58 +0,0 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"archive/zip"
|
||||
"errors"
|
||||
"io"
|
||||
"io/fs"
|
||||
"os"
|
||||
"path/filepath"
|
||||
)
|
||||
|
||||
type ZipReader struct {
|
||||
r *zip.Reader
|
||||
p string
|
||||
|
||||
// limit is the maximum size of a file that can be read directly
|
||||
// from the zip archive. Files larger than this size will be extracted
|
||||
limit int64
|
||||
}
|
||||
|
||||
func NewZipReader(r *zip.Reader, p string, limit int64) fs.FS {
|
||||
return &ZipReader{r, p, limit}
|
||||
}
|
||||
|
||||
func (z *ZipReader) Open(name string) (fs.File, error) {
|
||||
r, err := z.r.Open(name)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer r.Close()
|
||||
|
||||
if fi, err := r.Stat(); err != nil {
|
||||
return nil, err
|
||||
} else if fi.Size() < z.limit {
|
||||
return r, nil
|
||||
}
|
||||
|
||||
if !filepath.IsLocal(name) {
|
||||
return nil, zip.ErrInsecurePath
|
||||
}
|
||||
|
||||
n := filepath.Join(z.p, name)
|
||||
if _, err := os.Stat(n); errors.Is(err, os.ErrNotExist) {
|
||||
w, err := os.Create(n)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer w.Close()
|
||||
|
||||
if _, err := io.Copy(w, r); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return os.Open(n)
|
||||
}
|
||||
@@ -11,14 +11,15 @@ type Tensor interface {
|
||||
Name() string
|
||||
Shape() []uint64
|
||||
Kind() uint32
|
||||
SetRepacker(repacker)
|
||||
SetRepacker(Repacker)
|
||||
WriteTo(io.Writer) (int64, error)
|
||||
Clone() Tensor
|
||||
}
|
||||
|
||||
type tensorBase struct {
|
||||
name string
|
||||
shape []uint64
|
||||
repacker
|
||||
name string
|
||||
shape []uint64
|
||||
repacker Repacker
|
||||
}
|
||||
|
||||
func (t tensorBase) Name() string {
|
||||
@@ -36,7 +37,11 @@ const (
|
||||
|
||||
func (t tensorBase) Kind() uint32 {
|
||||
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
|
||||
t.name == "token_types.weight" {
|
||||
t.name == "token_types.weight" ||
|
||||
t.name == "v.positional_embedding_vlm" ||
|
||||
t.name == "v.tile_position_embd.weight" ||
|
||||
t.name == "v.pre_tile_position_embd.weight" ||
|
||||
t.name == "v.post_tile_position_embd.weight" {
|
||||
// these tensors are always F32
|
||||
return 0
|
||||
}
|
||||
@@ -51,21 +56,18 @@ func (t tensorBase) Kind() uint32 {
|
||||
}
|
||||
}
|
||||
|
||||
func (t *tensorBase) SetRepacker(fn repacker) {
|
||||
func (t *tensorBase) SetRepacker(fn Repacker) {
|
||||
t.repacker = fn
|
||||
}
|
||||
|
||||
type repacker func(string, []float32, []uint64) ([]float32, error)
|
||||
type Repacker func(string, []float32, []uint64) ([]float32, error)
|
||||
|
||||
func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
|
||||
patterns := []struct {
|
||||
Pattern string
|
||||
Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
|
||||
}{
|
||||
{"model-*-of-*.safetensors", parseSafetensors},
|
||||
{"model.safetensors", parseSafetensors},
|
||||
{"adapters.safetensors", parseSafetensors},
|
||||
{"adapter_model.safetensors", parseSafetensors},
|
||||
{"*.safetensors", parseSafetensors},
|
||||
{"pytorch_model-*-of-*.bin", parseTorch},
|
||||
{"pytorch_model.bin", parseTorch},
|
||||
{"consolidated.*.pth", parseTorch},
|
||||
|
||||
@@ -94,6 +94,21 @@ type safetensor struct {
|
||||
*tensorBase
|
||||
}
|
||||
|
||||
func (st safetensor) Clone() Tensor {
|
||||
return &safetensor{
|
||||
fs: st.fs,
|
||||
path: st.path,
|
||||
dtype: st.dtype,
|
||||
offset: st.offset,
|
||||
size: st.size,
|
||||
tensorBase: &tensorBase{
|
||||
name: st.name,
|
||||
repacker: st.repacker,
|
||||
shape: slices.Clone(st.shape),
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
func (st safetensor) WriteTo(w io.Writer) (int64, error) {
|
||||
f, err := st.fs.Open(st.path)
|
||||
if err != nil {
|
||||
|
||||
@@ -43,6 +43,17 @@ type torch struct {
|
||||
*tensorBase
|
||||
}
|
||||
|
||||
func (t torch) Clone() Tensor {
|
||||
return torch{
|
||||
storage: t.storage,
|
||||
tensorBase: &tensorBase{
|
||||
name: t.name,
|
||||
shape: t.shape,
|
||||
repacker: t.repacker,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
func (pt torch) WriteTo(w io.Writer) (int64, error) {
|
||||
return 0, nil
|
||||
}
|
||||
|
||||
@@ -1360,7 +1360,7 @@ func file_sentencepiece_model_proto_rawDescGZIP() []byte {
|
||||
|
||||
var file_sentencepiece_model_proto_enumTypes = make([]protoimpl.EnumInfo, 2)
|
||||
var file_sentencepiece_model_proto_msgTypes = make([]protoimpl.MessageInfo, 6)
|
||||
var file_sentencepiece_model_proto_goTypes = []interface{}{
|
||||
var file_sentencepiece_model_proto_goTypes = []any{
|
||||
(TrainerSpec_ModelType)(0), // 0: sentencepiece.TrainerSpec.ModelType
|
||||
(ModelProto_SentencePiece_Type)(0), // 1: sentencepiece.ModelProto.SentencePiece.Type
|
||||
(*TrainerSpec)(nil), // 2: sentencepiece.TrainerSpec
|
||||
@@ -1392,7 +1392,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return
|
||||
}
|
||||
if !protoimpl.UnsafeEnabled {
|
||||
file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*TrainerSpec); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
@@ -1406,7 +1406,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*NormalizerSpec); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
@@ -1420,7 +1420,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*SelfTestData); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
@@ -1434,7 +1434,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*ModelProto); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
@@ -1448,7 +1448,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*SelfTestData_Sample); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
@@ -1460,7 +1460,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*ModelProto_SentencePiece); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
|
||||
76
convert/tensor.go
Normal file
76
convert/tensor.go
Normal file
@@ -0,0 +1,76 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"iter"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type split struct {
|
||||
*strings.Replacer
|
||||
dim int
|
||||
|
||||
// fn is an optional function to apply to the tensor after slicing
|
||||
fn func(tensor.Tensor) (tensor.Tensor, error)
|
||||
}
|
||||
|
||||
// splitDim splits a tensor along a specified dimension into multiple tensors. The dimension
|
||||
// is split evenly based on the number of replacers provided unless a specific count is given.
|
||||
func splitDim(t Tensor, dim int, splits ...split) iter.Seq[*ggml.Tensor] {
|
||||
return func(yield func(*ggml.Tensor) bool) {
|
||||
var offset int
|
||||
for _, split := range splits {
|
||||
t := t.Clone()
|
||||
shape := slices.Clone(t.Shape())
|
||||
shape[dim] = cmp.Or(uint64(split.dim), shape[dim]/uint64(len(splits)))
|
||||
|
||||
slice := slices.Repeat([]tensor.Slice{nil}, len(shape))
|
||||
slice[dim] = tensor.S(offset, offset+int(shape[dim]))
|
||||
offset += int(shape[dim])
|
||||
|
||||
t.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
|
||||
dims := make([]int, len(shape))
|
||||
for i := range shape {
|
||||
dims[i] = int(shape[i])
|
||||
}
|
||||
|
||||
var tt tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
tt, err := tt.Slice(slice...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
tt = tensor.Materialize(tt)
|
||||
|
||||
if split.fn != nil {
|
||||
tt, err = split.fn(tt)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
// flatten tensor so it can be written as a vector
|
||||
if err := tt.Reshape(tt.Shape().TotalSize()); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return native.VectorF32(tt.(*tensor.Dense))
|
||||
})
|
||||
|
||||
if !yield(&ggml.Tensor{
|
||||
Name: split.Replace(t.Name()),
|
||||
Kind: t.Kind(),
|
||||
Shape: shape,
|
||||
WriterTo: t,
|
||||
}) {
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
304
convert/tensor_test.go
Normal file
304
convert/tensor_test.go
Normal file
@@ -0,0 +1,304 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"io"
|
||||
"iter"
|
||||
"slices"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
)
|
||||
|
||||
type fakeTensor struct {
|
||||
name string
|
||||
shape []uint64
|
||||
data []float32
|
||||
|
||||
repacker Repacker
|
||||
}
|
||||
|
||||
func (f fakeTensor) Name() string {
|
||||
return f.name
|
||||
}
|
||||
|
||||
func (f fakeTensor) Shape() []uint64 {
|
||||
return f.shape
|
||||
}
|
||||
|
||||
func (f fakeTensor) Kind() uint32 {
|
||||
return 0
|
||||
}
|
||||
|
||||
func (f *fakeTensor) SetRepacker(fn Repacker) {
|
||||
f.repacker = fn
|
||||
}
|
||||
|
||||
func (f fakeTensor) Clone() Tensor {
|
||||
return &fakeTensor{
|
||||
name: f.name,
|
||||
shape: slices.Clone(f.shape),
|
||||
data: slices.Clone(f.data),
|
||||
repacker: f.repacker,
|
||||
}
|
||||
}
|
||||
|
||||
func (f fakeTensor) WriteTo(w io.Writer) (n int64, err error) {
|
||||
data := f.data
|
||||
if f.repacker != nil {
|
||||
data, err = f.repacker(f.name, data, f.shape)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
}
|
||||
|
||||
if err := binary.Write(w, binary.LittleEndian, data); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
return int64(len(data) * 4), nil
|
||||
}
|
||||
|
||||
func mul(shape []uint64) int {
|
||||
n := 1
|
||||
for _, dim := range shape {
|
||||
n *= int(dim)
|
||||
}
|
||||
return n
|
||||
}
|
||||
|
||||
func TestSplitDim(t *testing.T) {
|
||||
r := fakeTensor{
|
||||
name: "a.b",
|
||||
shape: []uint64{3, 4},
|
||||
data: []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
|
||||
}
|
||||
|
||||
t.Run("no split", func(t *testing.T) {
|
||||
for tt := range splitDim(&r, 0, split{Replacer: strings.NewReplacer("a", "x")}) {
|
||||
if tt.Name != "x.b" {
|
||||
t.Fatalf("expected name 'x', got '%s'", tt.Name)
|
||||
}
|
||||
|
||||
if !slices.Equal(tt.Shape, []uint64{3, 4}) {
|
||||
t.Fatalf("expected shape [3, 4], got %v", tt.Shape)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if !slices.Equal(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}) {
|
||||
t.Fatalf("expected data [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], got %v", f32s)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("even split", func(t *testing.T) {
|
||||
next, stop := iter.Pull(splitDim(&r, 1,
|
||||
split{Replacer: strings.NewReplacer("a", "x")},
|
||||
split{Replacer: strings.NewReplacer("b", "y")},
|
||||
))
|
||||
defer stop()
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "x.b" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
|
||||
t.Fatal("expected shape [3, 2], got", tt.Shape)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if !slices.Equal(f32s, []float32{0, 1, 4, 5, 8, 9}) {
|
||||
t.Fatal("expected data [0, 1, 4, 5, 8, 9], got", f32s)
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "a.y" {
|
||||
t.Fatal("expected name 'a.y', got", tt.Name)
|
||||
}
|
||||
|
||||
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
|
||||
t.Fatal("expected shape [3, 2], got", tt.Shape)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if !slices.Equal(f32s, []float32{2, 3, 6, 7, 10, 11}) {
|
||||
t.Fatal("expected data [2, 3, 6, 7, 10, 11], got", f32s)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("uneven split", func(t *testing.T) {
|
||||
next, stop := iter.Pull(splitDim(&r, 0,
|
||||
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
|
||||
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
|
||||
))
|
||||
defer stop()
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "x.b" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if !slices.Equal(tt.Shape, []uint64{2, 4}) {
|
||||
t.Fatal("expected shape [2, 4], got", tt.Shape)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if !slices.Equal(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7}) {
|
||||
t.Fatal("expected data [0, 1, 2, 3, 4, 5, 6, 7], got", f32s)
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "a.y" {
|
||||
t.Fatal("expected name 'a.y', got", tt.Name)
|
||||
}
|
||||
|
||||
if !slices.Equal(tt.Shape, []uint64{1, 4}) {
|
||||
t.Fatal("expected shape [1, 4], got", tt.Shape)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if !slices.Equal(f32s, []float32{8, 9, 10, 11}) {
|
||||
t.Fatal("expected data [8, 9, 10, 11], got", f32s)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("split with transpose", func(t *testing.T) {
|
||||
next, stop := iter.Pull(splitDim(&r, 1,
|
||||
split{Replacer: strings.NewReplacer("a", "x")},
|
||||
split{Replacer: strings.NewReplacer("b", "y"), fn: func(tt tensor.Tensor) (tensor.Tensor, error) {
|
||||
return tensor.Transpose(tt, 1, 0)
|
||||
}},
|
||||
))
|
||||
defer stop()
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "x.b" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
|
||||
t.Fatal("expected shape [3, 2], got", tt.Shape)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if !slices.Equal(f32s, []float32{0, 1, 4, 5, 8, 9}) {
|
||||
t.Fatal("expected data [0, 1, 4, 5, 8, 9], got", f32s)
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "a.y" {
|
||||
t.Fatal("expected name 'a.y', got", tt.Name)
|
||||
}
|
||||
|
||||
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
|
||||
t.Fatal("expected shape [3, 2], got", tt.Shape)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if !slices.Equal(f32s, []float32{2, 6, 10, 3, 7, 11}) {
|
||||
t.Fatal("expected data [2, 6, 10, 3, 7, 11], got", f32s)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
@@ -110,6 +110,7 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
|
||||
}
|
||||
|
||||
if f, err := fsys.Open("tokenizer_config.json"); errors.Is(err, os.ErrNotExist) {
|
||||
// noop
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
} else {
|
||||
@@ -171,6 +172,34 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
|
||||
}
|
||||
}
|
||||
|
||||
if f, err := fsys.Open("generation_config.json"); errors.Is(err, os.ErrNotExist) {
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
} else {
|
||||
defer f.Close()
|
||||
|
||||
var p map[string]json.RawMessage
|
||||
if err := json.NewDecoder(f).Decode(&p); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
for _, st := range specialTokenTypes {
|
||||
if bts, ok := p[fmt.Sprintf("%s_token_id", st)]; ok {
|
||||
var ids []int32
|
||||
if err := json.Unmarshal(bts, &ids); err != nil {
|
||||
// value is not a list so the existing ID is used
|
||||
continue
|
||||
}
|
||||
|
||||
if i := slices.IndexFunc(t.SpecialVocabulary, func(sv *SpecialVocabulary) bool {
|
||||
return sv.Type == st
|
||||
}); i >= 0 {
|
||||
t.SpecialVocabulary[i].IDs = ids
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return t, nil
|
||||
}
|
||||
|
||||
@@ -280,6 +309,9 @@ type SpecialVocabulary struct {
|
||||
ID int
|
||||
Content string
|
||||
AddToken bool
|
||||
|
||||
// IDs is populated by generation_config.json
|
||||
IDs []int32
|
||||
}
|
||||
|
||||
func (sv SpecialVocabulary) Key() string {
|
||||
|
||||
@@ -6,7 +6,9 @@ import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"io/fs"
|
||||
"log/slog"
|
||||
"os"
|
||||
"reflect"
|
||||
"slices"
|
||||
|
||||
"google.golang.org/protobuf/proto"
|
||||
@@ -15,6 +17,8 @@ import (
|
||||
)
|
||||
|
||||
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
slog.Debug("using spm vocabulary")
|
||||
|
||||
ast, err := parseAdditionalSpecialTokens(fsys)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
@@ -43,10 +47,19 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
v.Types = append(v.Types, int32(t))
|
||||
default:
|
||||
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
|
||||
if slices.Contains(ast, piece.GetPiece()) {
|
||||
|
||||
// temporary fix to handle gemma3 broken configs
|
||||
if slices.Contains([]string{"<end_of_turn>", "<start_of_turn>"}, piece.GetPiece()) {
|
||||
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
|
||||
}
|
||||
|
||||
for _, t := range ast {
|
||||
if t.Content == piece.GetPiece() {
|
||||
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
v.Types = append(v.Types, tt)
|
||||
}
|
||||
}
|
||||
@@ -78,10 +91,16 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
return cmp.Compare(i.id, j.id)
|
||||
})
|
||||
|
||||
n := len(v.Tokens)
|
||||
for i, t := range ts {
|
||||
if t.id != i+n {
|
||||
return nil, fmt.Errorf("invalid token id: %d", t.id)
|
||||
for _, t := range ts {
|
||||
if t.id < len(v.Tokens) {
|
||||
if v.Tokens[t.id] == t.content {
|
||||
slog.Warn("tokenizer", "duplicate token", t.content, "id", t.id)
|
||||
continue
|
||||
}
|
||||
return nil, fmt.Errorf("token mismatch: %s != %s at pos [%d]", t.content, v.Tokens[t.id], t.id)
|
||||
}
|
||||
if t.id != len(v.Tokens) {
|
||||
return nil, fmt.Errorf("invalid token id: [%d] as pos [%d]", t.id, len(v.Tokens))
|
||||
}
|
||||
|
||||
v.Tokens = append(v.Tokens, t.content)
|
||||
@@ -92,7 +111,15 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
return &v, nil
|
||||
}
|
||||
|
||||
func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
|
||||
type specialToken struct {
|
||||
Content string `json:"content"`
|
||||
Lstrip bool `json:"lstrip"`
|
||||
Normalized bool `json:"normalized"`
|
||||
Rstrip bool `json:"rstrip"`
|
||||
SingleWord bool `json:"single_word"`
|
||||
}
|
||||
|
||||
func parseAdditionalSpecialTokens(fsys fs.FS) ([]specialToken, error) {
|
||||
f, err := fsys.Open("special_tokens_map.json")
|
||||
if errors.Is(err, os.ErrNotExist) {
|
||||
return nil, nil
|
||||
@@ -102,12 +129,43 @@ func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
|
||||
defer f.Close()
|
||||
|
||||
var m struct {
|
||||
AdditionalSpecialTokens []string `json:"additional_special_tokens"`
|
||||
AdditionalSpecialTokens any `json:"additional_special_tokens"`
|
||||
}
|
||||
|
||||
if err := json.NewDecoder(f).Decode(&m); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return m.AdditionalSpecialTokens, nil
|
||||
var ast []specialToken
|
||||
|
||||
switch st := m.AdditionalSpecialTokens.(type) {
|
||||
case []string:
|
||||
for _, s := range st {
|
||||
ast = append(ast, specialToken{Content: s})
|
||||
}
|
||||
case []any:
|
||||
for _, s := range st {
|
||||
// marshal and unmarshal the object to get the special token
|
||||
tMap := s.(map[string]any)
|
||||
data, err := json.Marshal(tMap)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var token specialToken
|
||||
err = json.Unmarshal(data, &token)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ast = append(ast, token)
|
||||
}
|
||||
|
||||
default:
|
||||
slog.Warn("special token", "unknown token", reflect.TypeOf(st))
|
||||
}
|
||||
|
||||
slog.Debug("spm tokenizer", "additional tokens", ast)
|
||||
|
||||
return ast, nil
|
||||
}
|
||||
|
||||
@@ -247,6 +247,67 @@ func TestParseTokenizer(t *testing.T) {
|
||||
Pre: "default",
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "generation config eos token ids",
|
||||
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
|
||||
"tokenizer.json": strings.NewReader(`{
|
||||
"added_tokens": [
|
||||
{
|
||||
"id": 0,
|
||||
"content": "<bos>",
|
||||
"special": true
|
||||
},
|
||||
{
|
||||
"id": 1,
|
||||
"content": "<eos>",
|
||||
"special": true
|
||||
},
|
||||
{
|
||||
"id": 2,
|
||||
"content": "<eot>",
|
||||
"special": true
|
||||
},
|
||||
{
|
||||
"id": 3,
|
||||
"content": "<eom>",
|
||||
"special": true
|
||||
}
|
||||
],
|
||||
"model": {
|
||||
"vocab": {
|
||||
"<bos>": 0,
|
||||
"<eos>": 1,
|
||||
"<eot>": 2,
|
||||
"<eom>": 3
|
||||
}
|
||||
}
|
||||
}`),
|
||||
"tokenizer_config.json": strings.NewReader(`{
|
||||
"add_bos_token": true,
|
||||
"add_eos_token": false,
|
||||
"bos_token": "<bos>",
|
||||
"eos_token": "<eos>"
|
||||
}`),
|
||||
"generation_config.json": strings.NewReader(`{
|
||||
"bos_token_id": 0,
|
||||
"eos_token_id": [1, 2, 3]
|
||||
}`),
|
||||
}),
|
||||
specialTokenTypes: []string{"pad", "eos", "bos", "unk"},
|
||||
want: &Tokenizer{
|
||||
Vocabulary: &Vocabulary{
|
||||
Model: "gpt2",
|
||||
Tokens: []string{"<bos>", "<eos>", "<eot>", "<eom>"},
|
||||
Scores: []float32{0, 1, 2, 3},
|
||||
Types: []int32{3, 3, 3, 3},
|
||||
},
|
||||
SpecialVocabulary: []*SpecialVocabulary{
|
||||
{Type: "eos", Content: "<eos>", ID: 1, IDs: []int32{1, 2, 3}, AddToken: false},
|
||||
{Type: "bos", Content: "<bos>", ID: 0, AddToken: true},
|
||||
},
|
||||
Pre: "default",
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
|
||||
@@ -300,20 +300,20 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
||||
})
|
||||
continue
|
||||
}
|
||||
minVer, err := strconv.Atoi(RocmComputeMajorMin)
|
||||
if err != nil {
|
||||
slog.Error("invalid RocmComputeMajorMin setting", "value", RocmComputeMajorMin, "error", err)
|
||||
}
|
||||
if int(major) < minVer {
|
||||
reason := fmt.Sprintf("amdgpu too old gfx%d%x%x", major, minor, patch)
|
||||
slog.Warn(reason, "gpu", gpuID)
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: reason,
|
||||
})
|
||||
//minVer, err := strconv.Atoi(RocmComputeMajorMin)
|
||||
//if err != nil {
|
||||
// slog.Error("invalid RocmComputeMajorMin setting", "value", RocmComputeMajorMin, "error", err)
|
||||
//}
|
||||
// if int(major) < minVer {
|
||||
// reason := fmt.Sprintf("amdgpu too old gfx%d%x%x", major, minor, patch)
|
||||
// slog.Warn(reason, "gpu", gpuID)
|
||||
// unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
// GpuInfo: gpuInfo.GpuInfo,
|
||||
// Reason: reason,
|
||||
// })
|
||||
|
||||
continue
|
||||
}
|
||||
// continue
|
||||
//}
|
||||
|
||||
slog.Debug("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
|
||||
slog.Debug("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory))
|
||||
|
||||
@@ -12,7 +12,7 @@ func IsNUMA() bool {
|
||||
// numa support in llama.cpp is linux only
|
||||
return false
|
||||
}
|
||||
ids := map[string]interface{}{}
|
||||
ids := map[string]any{}
|
||||
packageIds, _ := filepath.Glob("/sys/devices/system/cpu/cpu*/topology/physical_package_id")
|
||||
for _, packageId := range packageIds {
|
||||
id, err := os.ReadFile(packageId)
|
||||
|
||||
@@ -57,7 +57,8 @@ func cudaVariant(gpuInfo CudaGPUInfo) string {
|
||||
}
|
||||
}
|
||||
|
||||
if gpuInfo.computeMajor < 6 || gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
|
||||
// driver 12.0 has problems with the cuda v12 library, so run v11 on those older drivers
|
||||
if gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
|
||||
return "v11"
|
||||
}
|
||||
return "v12"
|
||||
|
||||
@@ -69,8 +69,8 @@ var (
|
||||
CudaComputeMajorMin = "5"
|
||||
CudaComputeMinorMin = "0"
|
||||
)
|
||||
|
||||
var RocmComputeMajorMin = "9"
|
||||
//change valute from 9 to 8 would release the gfx version limits ,refer to https://github.com/likelovewant/ollama-for-amd/issues/51
|
||||
var RocmComputeMajorMin = "8"
|
||||
|
||||
// TODO find a better way to detect iGPU instead of minimum memory
|
||||
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
|
||||
@@ -670,7 +670,7 @@ func loadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string, e
|
||||
}
|
||||
|
||||
func getVerboseState() C.uint16_t {
|
||||
if envconfig.Debug() {
|
||||
if envconfig.LogLevel() < slog.LevelInfo {
|
||||
return C.uint16_t(1)
|
||||
}
|
||||
return C.uint16_t(0)
|
||||
|
||||
@@ -27,12 +27,14 @@
|
||||
|
||||
#endif
|
||||
|
||||
#ifndef LOG
|
||||
#define LOG(verbose, ...) \
|
||||
do { \
|
||||
if (verbose) { \
|
||||
fprintf(stderr, __VA_ARGS__); \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
|
||||
|
||||
#include <string.h>
|
||||
#include <inttypes.h>
|
||||
#include "gpu_info_cudart.h"
|
||||
|
||||
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
|
||||
@@ -58,7 +59,7 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
|
||||
LOG(resp->ch.verbose, "cudaSetDevice err: %d\n", ret);
|
||||
UNLOAD_LIBRARY(resp->ch.handle);
|
||||
resp->ch.handle = NULL;
|
||||
if (ret == CUDA_ERROR_INSUFFICIENT_DRIVER) {
|
||||
if (ret == CUDART_ERROR_INSUFFICIENT_DRIVER) {
|
||||
resp->err = strdup("your nvidia driver is too old or missing. If you have a CUDA GPU please upgrade to run ollama");
|
||||
return;
|
||||
}
|
||||
@@ -168,9 +169,9 @@ void cudart_bootstrap(cudart_handle_t h, int i, mem_info_t *resp) {
|
||||
resp->free = memInfo.free;
|
||||
resp->used = memInfo.used;
|
||||
|
||||
LOG(h.verbose, "[%s] CUDA totalMem %lu\n", resp->gpu_id, resp->total);
|
||||
LOG(h.verbose, "[%s] CUDA freeMem %lu\n", resp->gpu_id, resp->free);
|
||||
LOG(h.verbose, "[%s] CUDA usedMem %lu\n", resp->gpu_id, resp->used);
|
||||
LOG(h.verbose, "[%s] CUDA totalMem %" PRId64 "\n", resp->gpu_id, resp->total);
|
||||
LOG(h.verbose, "[%s] CUDA freeMem %" PRId64 "\n", resp->gpu_id, resp->free);
|
||||
LOG(h.verbose, "[%s] CUDA usedMem %" PRId64 "\n", resp->gpu_id, resp->used);
|
||||
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
|
||||
}
|
||||
|
||||
@@ -180,4 +181,4 @@ void cudart_release(cudart_handle_t h) {
|
||||
h.handle = NULL;
|
||||
}
|
||||
|
||||
#endif // __APPLE__
|
||||
#endif // __APPLE__
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
|
||||
|
||||
#include <string.h>
|
||||
#include <inttypes.h>
|
||||
#include "gpu_info_nvcuda.h"
|
||||
|
||||
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
||||
@@ -193,8 +194,8 @@ void nvcuda_bootstrap(nvcuda_handle_t h, int i, mem_info_t *resp) {
|
||||
resp->total = memInfo.total;
|
||||
resp->free = memInfo.free;
|
||||
|
||||
LOG(h.verbose, "[%s] CUDA totalMem %lu mb\n", resp->gpu_id, resp->total / 1024 / 1024);
|
||||
LOG(h.verbose, "[%s] CUDA freeMem %lu mb\n", resp->gpu_id, resp->free / 1024 / 1024);
|
||||
LOG(h.verbose, "[%s] CUDA totalMem %" PRId64 "mb\n", resp->gpu_id, resp->total / 1024 / 1024);
|
||||
LOG(h.verbose, "[%s] CUDA freeMem %" PRId64 "mb\n", resp->gpu_id, resp->free / 1024 / 1024);
|
||||
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
|
||||
|
||||
|
||||
@@ -247,4 +248,4 @@ void nvcuda_release(nvcuda_handle_t h) {
|
||||
h.handle = NULL;
|
||||
}
|
||||
|
||||
#endif // __APPLE__
|
||||
#endif // __APPLE__
|
||||
|
||||
@@ -111,6 +111,7 @@ func GetCPUDetails() ([]CPU, error) {
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer file.Close()
|
||||
return linuxCPUDetails(file)
|
||||
}
|
||||
|
||||
@@ -168,13 +169,11 @@ func linuxCPUDetails(file io.Reader) ([]CPU, error) {
|
||||
for id, s := range socketByID {
|
||||
s.CoreCount = len(coreBySocket[id])
|
||||
s.ThreadCount = 0
|
||||
for _, tc := range threadsByCoreBySocket[id] {
|
||||
s.ThreadCount += tc
|
||||
}
|
||||
|
||||
// This only works if HT is enabled, consider a more reliable model, maybe cache size comparisons?
|
||||
efficiencyCoreCount := 0
|
||||
for _, threads := range threadsByCoreBySocket[id] {
|
||||
s.ThreadCount += threads
|
||||
if threads == 1 {
|
||||
efficiencyCoreCount++
|
||||
}
|
||||
|
||||
@@ -19,9 +19,8 @@ var LibOllamaPath string = func() string {
|
||||
return ""
|
||||
}
|
||||
|
||||
exe, err = filepath.EvalSymlinks(exe)
|
||||
if err != nil {
|
||||
return ""
|
||||
if eval, err := filepath.EvalSymlinks(exe); err == nil {
|
||||
exe = eval
|
||||
}
|
||||
|
||||
var libPath string
|
||||
|
||||
92
docs/api.md
92
docs/api.md
@@ -19,7 +19,7 @@
|
||||
|
||||
### Model names
|
||||
|
||||
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q4_1` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
|
||||
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q8_0` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
|
||||
|
||||
### Durations
|
||||
|
||||
@@ -43,6 +43,7 @@ Generate a response for a given prompt with a provided model. This is a streamin
|
||||
- `prompt`: the prompt to generate a response for
|
||||
- `suffix`: the text after the model response
|
||||
- `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`)
|
||||
- `think`: (for thinking models) should the model think before responding?
|
||||
|
||||
Advanced parameters (optional):
|
||||
|
||||
@@ -173,7 +174,7 @@ curl http://localhost:11434/api/generate -d '{
|
||||
|
||||
##### Response
|
||||
|
||||
```json
|
||||
```json5
|
||||
{
|
||||
"model": "codellama:code",
|
||||
"created_at": "2024-07-22T20:47:51.147561Z",
|
||||
@@ -394,9 +395,6 @@ curl http://localhost:11434/api/generate -d '{
|
||||
"repeat_penalty": 1.2,
|
||||
"presence_penalty": 1.5,
|
||||
"frequency_penalty": 1.0,
|
||||
"mirostat": 1,
|
||||
"mirostat_tau": 0.8,
|
||||
"mirostat_eta": 0.6,
|
||||
"penalize_newline": true,
|
||||
"stop": ["\n", "user:"],
|
||||
"numa": false,
|
||||
@@ -404,10 +402,7 @@ curl http://localhost:11434/api/generate -d '{
|
||||
"num_batch": 2,
|
||||
"num_gpu": 1,
|
||||
"main_gpu": 0,
|
||||
"low_vram": false,
|
||||
"vocab_only": false,
|
||||
"use_mmap": true,
|
||||
"use_mlock": false,
|
||||
"num_thread": 8
|
||||
}
|
||||
}'
|
||||
@@ -496,11 +491,13 @@ Generate the next message in a chat with a provided model. This is a streaming e
|
||||
- `model`: (required) the [model name](#model-names)
|
||||
- `messages`: the messages of the chat, this can be used to keep a chat memory
|
||||
- `tools`: list of tools in JSON for the model to use if supported
|
||||
- `think`: (for thinking models) should the model think before responding?
|
||||
|
||||
The `message` object has the following fields:
|
||||
|
||||
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
|
||||
- `content`: the content of the message
|
||||
- `thinking`: (for thinking models) the model's thinking process
|
||||
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
|
||||
- `tool_calls` (optional): a list of tools in JSON that the model wants to use
|
||||
|
||||
@@ -558,6 +555,10 @@ Final response:
|
||||
{
|
||||
"model": "llama3.2",
|
||||
"created_at": "2023-08-04T19:22:45.499127Z",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": ""
|
||||
},
|
||||
"done": true,
|
||||
"total_duration": 4883583458,
|
||||
"load_duration": 1334875,
|
||||
@@ -954,19 +955,8 @@ If you are creating a model from a safetensors directory or from a GGUF file, yo
|
||||
|
||||
| Type | Recommended |
|
||||
| --- | :-: |
|
||||
| q2_K | |
|
||||
| q3_K_L | |
|
||||
| q3_K_M | |
|
||||
| q3_K_S | |
|
||||
| q4_0 | |
|
||||
| q4_1 | |
|
||||
| q4_K_M | * |
|
||||
| q4_K_S | |
|
||||
| q5_0 | |
|
||||
| q5_1 | |
|
||||
| q5_K_M | |
|
||||
| q5_K_S | |
|
||||
| q6_K | |
|
||||
| q8_0 | * |
|
||||
|
||||
### Examples
|
||||
@@ -1011,8 +1001,8 @@ Quantize a non-quantized model.
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/create -d '{
|
||||
"model": "llama3.1:quantized",
|
||||
"from": "llama3.1:8b-instruct-fp16",
|
||||
"model": "llama3.2:quantized",
|
||||
"from": "llama3.2:3b-instruct-fp16",
|
||||
"quantize": "q4_K_M"
|
||||
}'
|
||||
```
|
||||
@@ -1022,12 +1012,14 @@ curl http://localhost:11434/api/create -d '{
|
||||
A stream of JSON objects is returned:
|
||||
|
||||
```json
|
||||
{"status":"quantizing F16 model to Q4_K_M"}
|
||||
{"status":"creating new layer sha256:667b0c1932bc6ffc593ed1d03f895bf2dc8dc6df21db3042284a6f4416b06a29"}
|
||||
{"status":"using existing layer sha256:11ce4ee3e170f6adebac9a991c22e22ab3f8530e154ee669954c4bc73061c258"}
|
||||
{"status":"using existing layer sha256:0ba8f0e314b4264dfd19df045cde9d4c394a52474bf92ed6a3de22a4ca31a177"}
|
||||
{"status":"quantizing F16 model to Q4_K_M","digest":"0","total":6433687776,"completed":12302}
|
||||
{"status":"quantizing F16 model to Q4_K_M","digest":"0","total":6433687776,"completed":6433687552}
|
||||
{"status":"verifying conversion"}
|
||||
{"status":"creating new layer sha256:fb7f4f211b89c6c4928ff4ddb73db9f9c0cfca3e000c3e40d6cf27ddc6ca72eb"}
|
||||
{"status":"using existing layer sha256:966de95ca8a62200913e3f8bfbf84c8494536f1b94b49166851e76644e966396"}
|
||||
{"status":"using existing layer sha256:fcc5a6bec9daf9b561a68827b67ab6088e1dba9d1fa2a50d7bbcc8384e0a265d"}
|
||||
{"status":"using existing layer sha256:a70ff7e570d97baaf4e62ac6e6ad9975e04caa6d900d3742d37698494479e0cd"}
|
||||
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
|
||||
{"status":"creating new layer sha256:455f34728c9b5dd3376378bfb809ee166c145b0b4c1f1a6feca069055066ef9a"}
|
||||
{"status":"writing manifest"}
|
||||
{"status":"success"}
|
||||
```
|
||||
@@ -1165,29 +1157,37 @@ A single JSON object will be returned.
|
||||
{
|
||||
"models": [
|
||||
{
|
||||
"name": "codellama:13b",
|
||||
"modified_at": "2023-11-04T14:56:49.277302595-07:00",
|
||||
"size": 7365960935,
|
||||
"digest": "9f438cb9cd581fc025612d27f7c1a6669ff83a8bb0ed86c94fcf4c5440555697",
|
||||
"name": "deepseek-r1:latest",
|
||||
"model": "deepseek-r1:latest",
|
||||
"modified_at": "2025-05-10T08:06:48.639712648-07:00",
|
||||
"size": 4683075271,
|
||||
"digest": "0a8c266910232fd3291e71e5ba1e058cc5af9d411192cf88b6d30e92b6e73163",
|
||||
"details": {
|
||||
"parent_model": "",
|
||||
"format": "gguf",
|
||||
"family": "llama",
|
||||
"families": null,
|
||||
"parameter_size": "13B",
|
||||
"quantization_level": "Q4_0"
|
||||
"family": "qwen2",
|
||||
"families": [
|
||||
"qwen2"
|
||||
],
|
||||
"parameter_size": "7.6B",
|
||||
"quantization_level": "Q4_K_M"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "llama3:latest",
|
||||
"modified_at": "2023-12-07T09:32:18.757212583-08:00",
|
||||
"size": 3825819519,
|
||||
"digest": "fe938a131f40e6f6d40083c9f0f430a515233eb2edaa6d72eb85c50d64f2300e",
|
||||
"name": "llama3.2:latest",
|
||||
"model": "llama3.2:latest",
|
||||
"modified_at": "2025-05-04T17:37:44.706015396-07:00",
|
||||
"size": 2019393189,
|
||||
"digest": "a80c4f17acd55265feec403c7aef86be0c25983ab279d83f3bcd3abbcb5b8b72",
|
||||
"details": {
|
||||
"parent_model": "",
|
||||
"format": "gguf",
|
||||
"family": "llama",
|
||||
"families": null,
|
||||
"parameter_size": "7B",
|
||||
"quantization_level": "Q4_0"
|
||||
"families": [
|
||||
"llama"
|
||||
],
|
||||
"parameter_size": "3.2B",
|
||||
"quantization_level": "Q4_K_M"
|
||||
}
|
||||
}
|
||||
]
|
||||
@@ -1213,13 +1213,13 @@ Show information about a model including details, modelfile, template, parameter
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/show -d '{
|
||||
"model": "llama3.2"
|
||||
"model": "llava"
|
||||
}'
|
||||
```
|
||||
|
||||
#### Response
|
||||
|
||||
```json
|
||||
```json5
|
||||
{
|
||||
"modelfile": "# Modelfile generated by \"ollama show\"\n# To build a new Modelfile based on this one, replace the FROM line with:\n# FROM llava:latest\n\nFROM /Users/matt/.ollama/models/blobs/sha256:200765e1283640ffbd013184bf496e261032fa75b99498a9613be4e94d63ad52\nTEMPLATE \"\"\"{{ .System }}\nUSER: {{ .Prompt }}\nASSISTANT: \"\"\"\nPARAMETER num_ctx 4096\nPARAMETER stop \"\u003c/s\u003e\"\nPARAMETER stop \"USER:\"\nPARAMETER stop \"ASSISTANT:\"",
|
||||
"parameters": "num_keep 24\nstop \"<|start_header_id|>\"\nstop \"<|end_header_id|>\"\nstop \"<|eot_id|>\"",
|
||||
@@ -1256,7 +1256,11 @@ curl http://localhost:11434/api/show -d '{
|
||||
"tokenizer.ggml.pre": "llama-bpe",
|
||||
"tokenizer.ggml.token_type": [], // populates if `verbose=true`
|
||||
"tokenizer.ggml.tokens": [] // populates if `verbose=true`
|
||||
}
|
||||
},
|
||||
"capabilities": [
|
||||
"completion",
|
||||
"vision"
|
||||
],
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
@@ -41,20 +41,11 @@ Install prerequisites:
|
||||
- [CMake](https://cmake.org/download/)
|
||||
- [Visual Studio 2022](https://visualstudio.microsoft.com/downloads/) including the Native Desktop Workload
|
||||
- (Optional) AMD GPU support
|
||||
- [ROCm](https://rocm.github.io/install.html)
|
||||
- [ROCm](https://rocm.docs.amd.com/en/latest/)
|
||||
- [Ninja](https://github.com/ninja-build/ninja/releases)
|
||||
- (Optional) NVIDIA GPU support
|
||||
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network)
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Ensure prerequisites are in `PATH` before running CMake.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> ROCm is not compatible with Visual Studio CMake generators. Use `-GNinja` when configuring the project.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> CUDA is only compatible with Visual Studio CMake generators.
|
||||
|
||||
Then, configure and build the project:
|
||||
|
||||
```shell
|
||||
@@ -62,6 +53,14 @@ cmake -B build
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Building for ROCm requires additional flags:
|
||||
> ```
|
||||
> cmake -B build -G Ninja -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++
|
||||
> cmake --build build --config Release
|
||||
> ```
|
||||
|
||||
|
||||
Lastly, run Ollama:
|
||||
|
||||
```shell
|
||||
@@ -70,7 +69,7 @@ go run . serve
|
||||
|
||||
## Windows (ARM)
|
||||
|
||||
Windows ARM does not support additional acceleration libraries at this time.
|
||||
Windows ARM does not support additional acceleration libraries at this time. Do not use cmake, simply `go run` or `go build`.
|
||||
|
||||
## Linux
|
||||
|
||||
@@ -119,6 +118,35 @@ To run tests, use `go test`:
|
||||
go test ./...
|
||||
```
|
||||
|
||||
> NOTE: In rare cirumstances, you may need to change a package using the new
|
||||
> "synctest" package in go1.24.
|
||||
>
|
||||
> If you do not have the "synctest" package enabled, you will not see build or
|
||||
> test failures resulting from your change(s), if any, locally, but CI will
|
||||
> break.
|
||||
>
|
||||
> If you see failures in CI, you can either keep pushing changes to see if the
|
||||
> CI build passes, or you can enable the "synctest" package locally to see the
|
||||
> failures before pushing.
|
||||
>
|
||||
> To enable the "synctest" package for testing, run the following command:
|
||||
>
|
||||
> ```shell
|
||||
> GOEXPERIMENT=synctest go test ./...
|
||||
> ```
|
||||
>
|
||||
> If you wish to enable synctest for all go commands, you can set the
|
||||
> `GOEXPERIMENT` environment variable in your shell profile or by using:
|
||||
>
|
||||
> ```shell
|
||||
> go env -w GOEXPERIMENT=synctest
|
||||
> ```
|
||||
>
|
||||
> Which will enable the "synctest" package for all go commands without needing
|
||||
> to set it for all shell sessions.
|
||||
>
|
||||
> The synctest package is not required for production builds.
|
||||
|
||||
## Library detection
|
||||
|
||||
Ollama looks for acceleration libraries in the following paths relative to the `ollama` executable:
|
||||
@@ -128,4 +156,4 @@ Ollama looks for acceleration libraries in the following paths relative to the `
|
||||
* `.` (macOS)
|
||||
* `build/lib/ollama` (for development)
|
||||
|
||||
If the libraries are not found, Ollama will not run with any acceleration libraries.
|
||||
If the libraries are not found, Ollama will not run with any acceleration libraries.
|
||||
|
||||
15
docs/faq.md
15
docs/faq.md
@@ -20,7 +20,13 @@ Please refer to the [GPU docs](./gpu.md).
|
||||
|
||||
## How can I specify the context window size?
|
||||
|
||||
By default, Ollama uses a context window size of 2048 tokens.
|
||||
By default, Ollama uses a context window size of 4096 tokens.
|
||||
|
||||
This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context window to 8K, use:
|
||||
|
||||
```shell
|
||||
OLLAMA_CONTEXT_LENGTH=8192 ollama serve
|
||||
```
|
||||
|
||||
To change this when using `ollama run`, use `/set parameter`:
|
||||
|
||||
@@ -187,6 +193,13 @@ cloudflared tunnel --url http://localhost:11434 --http-host-header="localhost:11
|
||||
|
||||
Ollama allows cross-origin requests from `127.0.0.1` and `0.0.0.0` by default. Additional origins can be configured with `OLLAMA_ORIGINS`.
|
||||
|
||||
For browser extensions, you'll need to explicitly allow the extension's origin pattern. Set `OLLAMA_ORIGINS` to include `chrome-extension://*`, `moz-extension://*`, and `safari-web-extension://*` if you wish to allow all browser extensions access, or specific extensions as needed:
|
||||
|
||||
```
|
||||
# Allow all Chrome, Firefox, and Safari extensions
|
||||
OLLAMA_ORIGINS=chrome-extension://*,moz-extension://*,safari-web-extension://* ollama serve
|
||||
```
|
||||
|
||||
Refer to the section [above](#how-do-i-configure-ollama-server) for how to set environment variables on your platform.
|
||||
|
||||
## Where are models stored?
|
||||
|
||||
@@ -7,7 +7,7 @@ Check your compute compatibility to see if your card is supported:
|
||||
|
||||
| Compute Capability | Family | Cards |
|
||||
| ------------------ | ------------------- | ----------------------------------------------------------------------------------------------------------- |
|
||||
| 9.0 | NVIDIA | `H100` |
|
||||
| 9.0 | NVIDIA | `H200` `H100` |
|
||||
| 8.9 | GeForce RTX 40xx | `RTX 4090` `RTX 4080 SUPER` `RTX 4080` `RTX 4070 Ti SUPER` `RTX 4070 Ti` `RTX 4070 SUPER` `RTX 4070` `RTX 4060 Ti` `RTX 4060` |
|
||||
| | NVIDIA Professional | `L4` `L40` `RTX 6000` |
|
||||
| 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` `RTX 3050 Ti` `RTX 3050` |
|
||||
|
||||
@@ -132,22 +132,12 @@ success
|
||||
|
||||
### Supported Quantizations
|
||||
|
||||
- `q4_0`
|
||||
- `q4_1`
|
||||
- `q5_0`
|
||||
- `q5_1`
|
||||
- `q8_0`
|
||||
|
||||
#### K-means Quantizations
|
||||
|
||||
- `q3_K_S`
|
||||
- `q3_K_M`
|
||||
- `q3_K_L`
|
||||
- `q4_K_S`
|
||||
- `q4_K_M`
|
||||
- `q5_K_S`
|
||||
- `q5_K_M`
|
||||
- `q6_K`
|
||||
|
||||
|
||||
## Sharing your model on ollama.com
|
||||
|
||||
@@ -75,7 +75,7 @@ RestartSec=3
|
||||
Environment="PATH=$PATH"
|
||||
|
||||
[Install]
|
||||
WantedBy=default.target
|
||||
WantedBy=multi-user.target
|
||||
```
|
||||
|
||||
Then start the service:
|
||||
@@ -112,8 +112,8 @@ sudo systemctl status ollama
|
||||
> While AMD has contributed the `amdgpu` driver upstream to the official linux
|
||||
> kernel source, the version is older and may not support all ROCm features. We
|
||||
> recommend you install the latest driver from
|
||||
> https://www.amd.com/en/support/linux-drivers for best support of your Radeon
|
||||
> GPU.
|
||||
> [AMD](https://www.amd.com/en/support/download/linux-drivers.html) for best support
|
||||
> of your Radeon GPU.
|
||||
|
||||
## Customizing
|
||||
|
||||
|
||||
@@ -150,9 +150,6 @@ PARAMETER <parameter> <parametervalue>
|
||||
|
||||
| Parameter | Description | Value Type | Example Usage |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------- | -------------------- |
|
||||
| mirostat | Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) | int | mirostat 0 |
|
||||
| mirostat_eta | Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1) | float | mirostat_eta 0.1 |
|
||||
| mirostat_tau | Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0) | float | mirostat_tau 5.0 |
|
||||
| num_ctx | Sets the size of the context window used to generate the next token. (Default: 2048) | int | num_ctx 4096 |
|
||||
| repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) | int | repeat_last_n 64 |
|
||||
| repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 |
|
||||
|
||||
@@ -12,7 +12,7 @@ A basic Go template consists of three main parts:
|
||||
|
||||
Here's an example of a simple chat template:
|
||||
|
||||
```gotmpl
|
||||
```go
|
||||
{{- range .Messages }}
|
||||
{{ .Role }}: {{ .Content }}
|
||||
{{- end }}
|
||||
@@ -162,6 +162,6 @@ CodeLlama [7B](https://ollama.com/library/codellama:7b-code) and [13B](https://o
|
||||
|
||||
Codestral [22B](https://ollama.com/library/codestral:22b) supports fill-in-middle.
|
||||
|
||||
```gotmpl
|
||||
```go
|
||||
[SUFFIX]{{ .Suffix }}[PREFIX] {{ .Prompt }}
|
||||
```
|
||||
|
||||
@@ -9,7 +9,7 @@ cat ~/.ollama/logs/server.log
|
||||
On **Linux** systems with systemd, the logs can be found with this command:
|
||||
|
||||
```shell
|
||||
journalctl -u ollama --no-pager
|
||||
journalctl -u ollama --no-pager --follow --pager-end
|
||||
```
|
||||
|
||||
When you run Ollama in a **container**, the logs go to stdout/stderr in the container:
|
||||
@@ -26,7 +26,6 @@ When you run Ollama on **Windows**, there are a few different locations. You can
|
||||
- `explorer %LOCALAPPDATA%\Ollama` to view logs. The most recent server logs will be in `server.log` and older logs will be in `server-#.log`
|
||||
- `explorer %LOCALAPPDATA%\Programs\Ollama` to browse the binaries (The installer adds this to your user PATH)
|
||||
- `explorer %HOMEPATH%\.ollama` to browse where models and configuration is stored
|
||||
- `explorer %TEMP%` where temporary executable files are stored in one or more `ollama*` directories
|
||||
|
||||
To enable additional debug logging to help troubleshoot problems, first **Quit the running app from the tray menu** then in a powershell terminal
|
||||
|
||||
@@ -69,9 +68,9 @@ If you run into problems on Linux and want to install an older version, or you'd
|
||||
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
|
||||
```
|
||||
|
||||
## Linux tmp noexec
|
||||
## Linux docker
|
||||
|
||||
If your system is configured with the "noexec" flag where Ollama stores its temporary executable files, you can specify an alternate location by setting OLLAMA_TMPDIR to a location writable by the user ollama runs as. For example OLLAMA_TMPDIR=/usr/share/ollama/
|
||||
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.
|
||||
|
||||
## NVIDIA GPU Discovery
|
||||
|
||||
@@ -100,8 +99,6 @@ On linux, AMD GPU access typically requires `video` and/or `render` group member
|
||||
|
||||
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -lnd /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the **numeric** group IDs on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices. For example, in the following output `crw-rw---- 1 0 44 226, 0 Sep 16 16:55 /dev/dri/card0` the group ID column is `44`
|
||||
|
||||
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.
|
||||
|
||||
If you are experiencing problems getting Ollama to correctly discover or use your GPU for inference, the following may help isolate the failure.
|
||||
- `AMD_LOG_LEVEL=3` Enable info log levels in the AMD HIP/ROCm libraries. This can help show more detailed error codes that can help troubleshoot problems
|
||||
- `OLLAMA_DEBUG=1` During GPU discovery additional information will be reported
|
||||
|
||||
@@ -55,14 +55,13 @@ Here's a quick example showing API access from `powershell`
|
||||
## Troubleshooting
|
||||
|
||||
Ollama on Windows stores files in a few different locations. You can view them in
|
||||
the explorer window by hitting `<cmd>+R` and type in:
|
||||
the explorer window by hitting `<Ctrl>+R` and type in:
|
||||
- `explorer %LOCALAPPDATA%\Ollama` contains logs, and downloaded updates
|
||||
- *app.log* contains most resent logs from the GUI application
|
||||
- *server.log* contains the most recent server logs
|
||||
- *upgrade.log* contains log output for upgrades
|
||||
- `explorer %LOCALAPPDATA%\Programs\Ollama` contains the binaries (The installer adds this to your user PATH)
|
||||
- `explorer %HOMEPATH%\.ollama` contains models and configuration
|
||||
- `explorer %TEMP%` contains temporary executable files in one or more `ollama*` directories
|
||||
|
||||
## Uninstall
|
||||
|
||||
@@ -81,9 +80,11 @@ help you keep up to date.
|
||||
|
||||
If you'd like to install or integrate Ollama as a service, a standalone
|
||||
`ollama-windows-amd64.zip` zip file is available containing only the Ollama CLI
|
||||
and GPU library dependencies for Nvidia and AMD. This allows for embedding
|
||||
Ollama in existing applications, or running it as a system service via `ollama
|
||||
serve` with tools such as [NSSM](https://nssm.cc/).
|
||||
and GPU library dependencies for Nvidia. If you have an AMD GPU, also download
|
||||
and extract the additional ROCm package `ollama-windows-amd64-rocm.zip` into the
|
||||
same directory. This allows for embedding Ollama in existing applications, or
|
||||
running it as a system service via `ollama serve` with tools such as
|
||||
[NSSM](https://nssm.cc/).
|
||||
|
||||
> [!NOTE]
|
||||
> If you are upgrading from a prior version, you should remove the old directories first.
|
||||
|
||||
@@ -53,8 +53,8 @@ func Host() *url.URL {
|
||||
}
|
||||
}
|
||||
|
||||
// Origins returns a list of allowed origins. Origins can be configured via the OLLAMA_ORIGINS environment variable.
|
||||
func Origins() (origins []string) {
|
||||
// AllowedOrigins returns a list of allowed origins. AllowedOrigins can be configured via the OLLAMA_ORIGINS environment variable.
|
||||
func AllowedOrigins() (origins []string) {
|
||||
if s := Var("OLLAMA_ORIGINS"); s != "" {
|
||||
origins = strings.Split(s, ",")
|
||||
}
|
||||
@@ -73,6 +73,7 @@ func Origins() (origins []string) {
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
"vscode-file://*",
|
||||
)
|
||||
|
||||
return origins
|
||||
@@ -148,9 +149,22 @@ func Bool(k string) func() bool {
|
||||
}
|
||||
}
|
||||
|
||||
// LogLevel returns the log level for the application.
|
||||
// Values are 0 or false INFO (Default), 1 or true DEBUG, 2 TRACE
|
||||
func LogLevel() slog.Level {
|
||||
level := slog.LevelInfo
|
||||
if s := Var("OLLAMA_DEBUG"); s != "" {
|
||||
if b, _ := strconv.ParseBool(s); b {
|
||||
level = slog.LevelDebug
|
||||
} else if i, _ := strconv.ParseInt(s, 10, 64); i != 0 {
|
||||
level = slog.Level(i * -4)
|
||||
}
|
||||
}
|
||||
|
||||
return level
|
||||
}
|
||||
|
||||
var (
|
||||
// Debug enabled additional debug information.
|
||||
Debug = Bool("OLLAMA_DEBUG")
|
||||
// FlashAttention enables the experimental flash attention feature.
|
||||
FlashAttention = Bool("OLLAMA_FLASH_ATTENTION")
|
||||
// KvCacheType is the quantization type for the K/V cache.
|
||||
@@ -165,6 +179,12 @@ var (
|
||||
IntelGPU = Bool("OLLAMA_INTEL_GPU")
|
||||
// MultiUserCache optimizes prompt caching for multi-user scenarios
|
||||
MultiUserCache = Bool("OLLAMA_MULTIUSER_CACHE")
|
||||
// Enable the new Ollama engine
|
||||
NewEngine = Bool("OLLAMA_NEW_ENGINE")
|
||||
// ContextLength sets the default context length
|
||||
ContextLength = Uint("OLLAMA_CONTEXT_LENGTH", 4096)
|
||||
// Auth enables authentication between the Ollama client and server
|
||||
UseAuth = Bool("OLLAMA_AUTH")
|
||||
)
|
||||
|
||||
func String(s string) func() string {
|
||||
@@ -204,8 +224,6 @@ var (
|
||||
MaxRunners = Uint("OLLAMA_MAX_LOADED_MODELS", 0)
|
||||
// MaxQueue sets the maximum number of queued requests. MaxQueue can be configured via the OLLAMA_MAX_QUEUE environment variable.
|
||||
MaxQueue = Uint("OLLAMA_MAX_QUEUE", 512)
|
||||
// MaxVRAM sets a maximum VRAM override in bytes. MaxVRAM can be configured via the OLLAMA_MAX_VRAM environment variable.
|
||||
MaxVRAM = Uint("OLLAMA_MAX_VRAM", 0)
|
||||
)
|
||||
|
||||
func Uint64(key string, defaultValue uint64) func() uint64 {
|
||||
@@ -233,7 +251,7 @@ type EnvVar struct {
|
||||
|
||||
func AsMap() map[string]EnvVar {
|
||||
ret := map[string]EnvVar{
|
||||
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", Debug(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
|
||||
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", LogLevel(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
|
||||
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention(), "Enabled flash attention"},
|
||||
"OLLAMA_KV_CACHE_TYPE": {"OLLAMA_KV_CACHE_TYPE", KvCacheType(), "Quantization type for the K/V cache (default: f16)"},
|
||||
"OLLAMA_GPU_OVERHEAD": {"OLLAMA_GPU_OVERHEAD", GpuOverhead(), "Reserve a portion of VRAM per GPU (bytes)"},
|
||||
@@ -247,9 +265,11 @@ func AsMap() map[string]EnvVar {
|
||||
"OLLAMA_NOHISTORY": {"OLLAMA_NOHISTORY", NoHistory(), "Do not preserve readline history"},
|
||||
"OLLAMA_NOPRUNE": {"OLLAMA_NOPRUNE", NoPrune(), "Do not prune model blobs on startup"},
|
||||
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel(), "Maximum number of parallel requests"},
|
||||
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", Origins(), "A comma separated list of allowed origins"},
|
||||
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", AllowedOrigins(), "A comma separated list of allowed origins"},
|
||||
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
|
||||
"OLLAMA_MULTIUSER_CACHE": {"OLLAMA_MULTIUSER_CACHE", MultiUserCache(), "Optimize prompt caching for multi-user scenarios"},
|
||||
"OLLAMA_CONTEXT_LENGTH": {"OLLAMA_CONTEXT_LENGTH", ContextLength(), "Context length to use unless otherwise specified (default: 4096)"},
|
||||
"OLLAMA_NEW_ENGINE": {"OLLAMA_NEW_ENGINE", NewEngine(), "Enable the new Ollama engine"},
|
||||
|
||||
// Informational
|
||||
"HTTP_PROXY": {"HTTP_PROXY", String("HTTP_PROXY")(), "HTTP proxy"},
|
||||
|
||||
@@ -1,11 +1,13 @@
|
||||
package envconfig
|
||||
|
||||
import (
|
||||
"log/slog"
|
||||
"math"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
"github.com/ollama/ollama/logutil"
|
||||
)
|
||||
|
||||
func TestHost(t *testing.T) {
|
||||
@@ -69,6 +71,7 @@ func TestOrigins(t *testing.T) {
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
"vscode-file://*",
|
||||
}},
|
||||
{"http://10.0.0.1", []string{
|
||||
"http://10.0.0.1",
|
||||
@@ -88,6 +91,7 @@ func TestOrigins(t *testing.T) {
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
"vscode-file://*",
|
||||
}},
|
||||
{"http://172.16.0.1,https://192.168.0.1", []string{
|
||||
"http://172.16.0.1",
|
||||
@@ -108,6 +112,7 @@ func TestOrigins(t *testing.T) {
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
"vscode-file://*",
|
||||
}},
|
||||
{"http://totally.safe,http://definitely.legit", []string{
|
||||
"http://totally.safe",
|
||||
@@ -128,13 +133,14 @@ func TestOrigins(t *testing.T) {
|
||||
"file://*",
|
||||
"tauri://*",
|
||||
"vscode-webview://*",
|
||||
"vscode-file://*",
|
||||
}},
|
||||
}
|
||||
for _, tt := range cases {
|
||||
t.Run(tt.value, func(t *testing.T) {
|
||||
t.Setenv("OLLAMA_ORIGINS", tt.value)
|
||||
|
||||
if diff := cmp.Diff(Origins(), tt.expect); diff != "" {
|
||||
if diff := cmp.Diff(AllowedOrigins(), tt.expect); diff != "" {
|
||||
t.Errorf("%s: mismatch (-want +got):\n%s", tt.value, diff)
|
||||
}
|
||||
})
|
||||
@@ -272,3 +278,50 @@ func TestVar(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestContextLength(t *testing.T) {
|
||||
cases := map[string]uint{
|
||||
"": 4096,
|
||||
"2048": 2048,
|
||||
}
|
||||
|
||||
for k, v := range cases {
|
||||
t.Run(k, func(t *testing.T) {
|
||||
t.Setenv("OLLAMA_CONTEXT_LENGTH", k)
|
||||
if i := ContextLength(); i != v {
|
||||
t.Errorf("%s: expected %d, got %d", k, v, i)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestLogLevel(t *testing.T) {
|
||||
cases := map[string]slog.Level{
|
||||
// Default to INFO
|
||||
"": slog.LevelInfo,
|
||||
"false": slog.LevelInfo,
|
||||
"f": slog.LevelInfo,
|
||||
"0": slog.LevelInfo,
|
||||
|
||||
// True values enable Debug
|
||||
"true": slog.LevelDebug,
|
||||
"t": slog.LevelDebug,
|
||||
|
||||
// Positive values increase verbosity
|
||||
"1": slog.LevelDebug,
|
||||
"2": logutil.LevelTrace,
|
||||
|
||||
// Negative values decrease verbosity
|
||||
"-1": slog.LevelWarn,
|
||||
"-2": slog.LevelError,
|
||||
}
|
||||
|
||||
for k, v := range cases {
|
||||
t.Run(k, func(t *testing.T) {
|
||||
t.Setenv("OLLAMA_DEBUG", k)
|
||||
if i := LogLevel(); i != v {
|
||||
t.Errorf("%s: expected %d, got %d", k, v, i)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -12,6 +12,9 @@ func TestHumanNumber(t *testing.T) {
|
||||
|
||||
testCases := []testCase{
|
||||
{0, "0"},
|
||||
{999, "999"},
|
||||
{1000, "1K"},
|
||||
{1001, "1K"},
|
||||
{1000000, "1M"},
|
||||
{125000000, "125M"},
|
||||
{500500000, "500.50M"},
|
||||
|
||||
@@ -5,7 +5,7 @@ import (
|
||||
"time"
|
||||
)
|
||||
|
||||
func assertEqual(t *testing.T, a interface{}, b interface{}) {
|
||||
func assertEqual(t *testing.T, a any, b any) {
|
||||
if a != b {
|
||||
t.Errorf("Assert failed, expected %v, got %v", b, a)
|
||||
}
|
||||
|
||||
13
fs/config.go
Normal file
13
fs/config.go
Normal file
@@ -0,0 +1,13 @@
|
||||
package fs
|
||||
|
||||
type Config interface {
|
||||
Architecture() string
|
||||
String(string, ...string) string
|
||||
Uint(string, ...uint32) uint32
|
||||
Float(string, ...float32) float32
|
||||
Bool(string, ...bool) bool
|
||||
|
||||
Strings(string, ...[]string) []string
|
||||
Ints(string, ...[]int32) []int32
|
||||
Floats(string, ...[]float32) []float32
|
||||
}
|
||||
705
fs/ggml/ggml.go
Normal file
705
fs/ggml/ggml.go
Normal file
@@ -0,0 +1,705 @@
|
||||
package ggml
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs/util/bufioutil"
|
||||
)
|
||||
|
||||
type GGML struct {
|
||||
container
|
||||
model
|
||||
Length int64
|
||||
}
|
||||
|
||||
type model interface {
|
||||
KV() KV
|
||||
Tensors() Tensors
|
||||
}
|
||||
|
||||
type KV map[string]any
|
||||
|
||||
func (kv KV) Architecture() string {
|
||||
return kv.String("general.architecture", "unknown")
|
||||
}
|
||||
|
||||
func (kv KV) Kind() string {
|
||||
return kv.String("general.type", "unknown")
|
||||
}
|
||||
|
||||
func (kv KV) ParameterCount() uint64 {
|
||||
return keyValue(kv, "general.parameter_count", uint64(0))
|
||||
}
|
||||
|
||||
func (kv KV) FileType() FileType {
|
||||
if t := kv.Uint("general.file_type"); t > 0 {
|
||||
return FileType(t)
|
||||
}
|
||||
|
||||
return FileTypeUnknown
|
||||
}
|
||||
|
||||
func (kv KV) BlockCount() uint64 {
|
||||
return uint64(kv.Uint("block_count"))
|
||||
}
|
||||
|
||||
func (kv KV) EmbeddingLength() uint64 {
|
||||
return uint64(kv.Uint("embedding_length"))
|
||||
}
|
||||
|
||||
func (kv KV) HeadCount() uint64 {
|
||||
return uint64(kv.Uint("attention.head_count"))
|
||||
}
|
||||
|
||||
func (kv KV) HeadCountKV() uint64 {
|
||||
return uint64(kv.Uint("attention.head_count_kv", 1))
|
||||
}
|
||||
|
||||
func (kv KV) EmbeddingHeadCount() uint64 {
|
||||
if heads := kv.HeadCount(); heads > 0 {
|
||||
return kv.EmbeddingLength() / heads
|
||||
}
|
||||
|
||||
return 0
|
||||
}
|
||||
|
||||
func (kv KV) EmbeddingHeadCountK() uint64 {
|
||||
return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCount())))
|
||||
}
|
||||
|
||||
func (kv KV) EmbeddingHeadCountV() uint64 {
|
||||
return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCount())))
|
||||
}
|
||||
|
||||
func (kv KV) GQA() uint64 {
|
||||
return kv.HeadCount() / kv.HeadCountKV()
|
||||
}
|
||||
|
||||
func (kv KV) ContextLength() uint64 {
|
||||
return uint64(kv.Uint("context_length"))
|
||||
}
|
||||
|
||||
func (kv KV) ChatTemplate() string {
|
||||
return kv.String("tokenizer.chat_template")
|
||||
}
|
||||
|
||||
func (kv KV) String(key string, defaultValue ...string) string {
|
||||
return keyValue(kv, key, append(defaultValue, "")...)
|
||||
}
|
||||
|
||||
func (kv KV) Uint(key string, defaultValue ...uint32) uint32 {
|
||||
return keyValue(kv, key, append(defaultValue, 0)...)
|
||||
}
|
||||
|
||||
func (kv KV) Float(key string, defaultValue ...float32) float32 {
|
||||
return keyValue(kv, key, append(defaultValue, 0)...)
|
||||
}
|
||||
|
||||
func (kv KV) Bool(key string, defaultValue ...bool) bool {
|
||||
return keyValue(kv, key, append(defaultValue, false)...)
|
||||
}
|
||||
|
||||
func (kv KV) Strings(key string, defaultValue ...[]string) []string {
|
||||
return keyValue(kv, key, &array[string]{values: append(defaultValue, []string(nil))[0]}).values
|
||||
}
|
||||
|
||||
func (kv KV) Ints(key string, defaultValue ...[]int32) []int32 {
|
||||
return keyValue(kv, key, &array[int32]{values: append(defaultValue, []int32(nil))[0]}).values
|
||||
}
|
||||
|
||||
func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
|
||||
return keyValue(kv, key, &array[uint32]{values: append(defaultValue, []uint32(nil))[0]}).values
|
||||
}
|
||||
|
||||
func (kv KV) Floats(key string, defaultValue ...[]float32) []float32 {
|
||||
return keyValue(kv, key, &array[float32]{values: append(defaultValue, []float32(nil))[0]}).values
|
||||
}
|
||||
|
||||
func (kv KV) OllamaEngineRequired() bool {
|
||||
return slices.Contains([]string{
|
||||
"gemma3",
|
||||
"mistral3",
|
||||
"llama4",
|
||||
"mllama",
|
||||
"qwen25vl",
|
||||
}, kv.Architecture())
|
||||
}
|
||||
|
||||
type valueTypes interface {
|
||||
uint8 | int8 | uint16 | int16 |
|
||||
uint32 | int32 | uint64 | int64 |
|
||||
string | float32 | float64 | bool
|
||||
}
|
||||
|
||||
type arrayValueTypes interface {
|
||||
*array[uint8] | *array[int8] | *array[uint16] | *array[int16] |
|
||||
*array[uint32] | *array[int32] | *array[uint64] | *array[int64] |
|
||||
*array[string] | *array[float32] | *array[float64] | *array[bool]
|
||||
}
|
||||
|
||||
func keyValue[T valueTypes | arrayValueTypes](kv KV, key string, defaultValue ...T) T {
|
||||
if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
|
||||
key = kv.Architecture() + "." + key
|
||||
}
|
||||
|
||||
if val, ok := kv[key]; ok {
|
||||
return val.(T)
|
||||
}
|
||||
|
||||
slog.Debug("key not found", "key", key, "default", defaultValue[0])
|
||||
return defaultValue[0]
|
||||
}
|
||||
|
||||
type Tensors struct {
|
||||
items []*Tensor
|
||||
Offset uint64
|
||||
}
|
||||
|
||||
func (s Tensors) Items(prefix ...string) []*Tensor {
|
||||
if len(prefix) == 0 {
|
||||
return s.items
|
||||
}
|
||||
|
||||
var items []*Tensor
|
||||
for _, t := range s.items {
|
||||
if strings.HasPrefix(t.Name, prefix[0]) {
|
||||
items = append(items, t)
|
||||
}
|
||||
}
|
||||
|
||||
return items
|
||||
}
|
||||
|
||||
func (ts Tensors) GroupLayers() map[string]Layer {
|
||||
layers := make(map[string]Layer)
|
||||
for _, t := range ts.items {
|
||||
parts := strings.Split(t.Name, ".")
|
||||
if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 {
|
||||
if len(parts) > index+2 {
|
||||
// blk and mm should have a number after them, join it
|
||||
parts = append(
|
||||
[]string{strings.Join(parts[:index+2], ".")},
|
||||
parts[index+2:]...)
|
||||
}
|
||||
}
|
||||
|
||||
if _, ok := layers[parts[0]]; !ok {
|
||||
layers[parts[0]] = make(Layer)
|
||||
}
|
||||
|
||||
layers[parts[0]][strings.Join(parts[1:], ".")] = t
|
||||
}
|
||||
|
||||
return layers
|
||||
}
|
||||
|
||||
type Layer map[string]*Tensor
|
||||
|
||||
func (l Layer) Size() (size uint64) {
|
||||
for _, t := range l {
|
||||
size += t.Size()
|
||||
}
|
||||
|
||||
return size
|
||||
}
|
||||
|
||||
type Tensor struct {
|
||||
Name string `json:"name"`
|
||||
Kind uint32 `json:"kind"`
|
||||
Offset uint64 `json:"-"`
|
||||
|
||||
// Shape is the number of elements in each dimension
|
||||
Shape []uint64 `json:"shape"`
|
||||
|
||||
io.WriterTo `json:"-"`
|
||||
}
|
||||
|
||||
func (t Tensor) block() (n int) {
|
||||
if _, err := fmt.Sscanf(t.Name, "blk.%d.", &n); err != nil {
|
||||
return -1
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func (t Tensor) blockSize() uint64 {
|
||||
return (TensorType)(t.Kind).BlockSize()
|
||||
}
|
||||
|
||||
func (t TensorType) BlockSize() uint64 {
|
||||
switch t {
|
||||
case
|
||||
0, // F32
|
||||
1, // F16
|
||||
24, // I8
|
||||
25, // I16
|
||||
26, // I32
|
||||
27, // I64
|
||||
28, // F64
|
||||
30: // BF16
|
||||
return 1
|
||||
case
|
||||
2, // Q4_0
|
||||
3, // Q4_1
|
||||
6, // Q5_0
|
||||
7, // Q5_1
|
||||
8, // Q8_0
|
||||
9, // Q8_1
|
||||
20: // IQ4_NL
|
||||
return 32
|
||||
default:
|
||||
return 256
|
||||
}
|
||||
}
|
||||
|
||||
func (t Tensor) typeSize() uint64 {
|
||||
return TensorType(t.Kind).TypeSize()
|
||||
}
|
||||
|
||||
func (t TensorType) TypeSize() uint64 {
|
||||
blockSize := t.BlockSize()
|
||||
|
||||
switch t {
|
||||
case TensorTypeF32:
|
||||
return 4
|
||||
case TensorTypeF16:
|
||||
return 2
|
||||
case TensorTypeQ4_0:
|
||||
return 2 + blockSize/2
|
||||
case TensorTypeQ4_1:
|
||||
return 2 + 2 + blockSize/2
|
||||
case TensorTypeQ5_0:
|
||||
return 2 + 4 + blockSize/2
|
||||
case TensorTypeQ5_1:
|
||||
return 2 + 2 + 4 + blockSize/2
|
||||
case TensorTypeQ8_0:
|
||||
return 2 + blockSize
|
||||
case TensorTypeQ8_1:
|
||||
return 2 + 2 + blockSize
|
||||
case TensorTypeQ2_K:
|
||||
return blockSize/16 + blockSize/4 + 2 + 2
|
||||
case TensorTypeQ3_K:
|
||||
return blockSize/8 + blockSize/4 + 12 + 2
|
||||
case TensorTypeQ4_K:
|
||||
return 2 + 2 + 12 + blockSize/2
|
||||
case TensorTypeQ5_K:
|
||||
return 2 + 2 + 12 + blockSize/8 + blockSize/2
|
||||
case TensorTypeQ6_K:
|
||||
return blockSize/2 + blockSize/4 + blockSize/16 + 2
|
||||
case TensorTypeQ8_K:
|
||||
return 4 + blockSize + 2*blockSize/16
|
||||
case tensorTypeIQ2_XXS:
|
||||
return 2 + 2*blockSize/8
|
||||
case tensorTypeIQ2_XS:
|
||||
return 2 + 2*blockSize/8 + blockSize/32
|
||||
case tensorTypeIQ3_XXS:
|
||||
return 2 + blockSize/4 + blockSize/8
|
||||
case tensorTypeIQ1_S:
|
||||
return 2 + blockSize/8 + blockSize/16
|
||||
case tensorTypeIQ4_NL:
|
||||
return 2 + blockSize/2
|
||||
case tensorTypeIQ3_S:
|
||||
return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
|
||||
case tensorTypeIQ2_S:
|
||||
return 2 + blockSize/4 + blockSize/16
|
||||
case tensorTypeIQ4_XS:
|
||||
return 2 + 2 + blockSize/2 + blockSize/64
|
||||
case TensorTypeI8:
|
||||
return 1
|
||||
case TensorTypeI16:
|
||||
return 2
|
||||
case TensorTypeI32:
|
||||
return 4
|
||||
case TensorTypeI64:
|
||||
return 8
|
||||
case TensorTypeF64:
|
||||
return 8
|
||||
case tensorTypeIQ1_M:
|
||||
return blockSize/8 + blockSize/16 + blockSize/32
|
||||
case TensorTypeBF16:
|
||||
return 2
|
||||
default:
|
||||
return 0
|
||||
}
|
||||
}
|
||||
|
||||
func (t Tensor) Elements() uint64 {
|
||||
var count uint64 = 1
|
||||
for _, n := range t.Shape {
|
||||
count *= n
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
func (t Tensor) Size() uint64 {
|
||||
return t.Elements() * t.typeSize() / t.blockSize()
|
||||
}
|
||||
|
||||
func (t Tensor) Type() string {
|
||||
return TensorType(t.Kind).String()
|
||||
}
|
||||
|
||||
type container interface {
|
||||
Name() string
|
||||
Decode(io.ReadSeeker) (model, error)
|
||||
}
|
||||
|
||||
const (
|
||||
// Magic constant for `ggml` files (unversioned).
|
||||
FILE_MAGIC_GGML = 0x67676d6c
|
||||
// Magic constant for `ggml` files (versioned, ggmf).
|
||||
FILE_MAGIC_GGMF = 0x67676d66
|
||||
// Magic constant for `ggml` files (versioned, ggjt).
|
||||
FILE_MAGIC_GGJT = 0x67676a74
|
||||
// Magic constant for `ggla` files (LoRA adapter).
|
||||
FILE_MAGIC_GGLA = 0x67676C61
|
||||
// Magic constant for `gguf` files (versioned, gguf)
|
||||
FILE_MAGIC_GGUF_LE = 0x46554747
|
||||
FILE_MAGIC_GGUF_BE = 0x47475546
|
||||
)
|
||||
|
||||
var ErrUnsupportedFormat = errors.New("unsupported model format")
|
||||
|
||||
func DetectContentType(b []byte) string {
|
||||
switch binary.LittleEndian.Uint32(b[:4]) {
|
||||
case FILE_MAGIC_GGML:
|
||||
return "ggml"
|
||||
case FILE_MAGIC_GGMF:
|
||||
return "ggmf"
|
||||
case FILE_MAGIC_GGJT:
|
||||
return "ggjt"
|
||||
case FILE_MAGIC_GGLA:
|
||||
return "ggla"
|
||||
case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
|
||||
return "gguf"
|
||||
default:
|
||||
return ""
|
||||
}
|
||||
}
|
||||
|
||||
// Decode decodes a GGML model from the given reader.
|
||||
//
|
||||
// It collects array values for arrays with a size less than or equal to
|
||||
// maxArraySize. If the maxArraySize is negative, all arrays are collected.
|
||||
func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, error) {
|
||||
rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
|
||||
|
||||
var magic uint32
|
||||
if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var c container
|
||||
switch magic {
|
||||
case FILE_MAGIC_GGUF_LE:
|
||||
c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
|
||||
case FILE_MAGIC_GGUF_BE:
|
||||
c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
|
||||
default:
|
||||
return nil, errors.New("invalid file magic")
|
||||
}
|
||||
|
||||
model, err := c.Decode(rs)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
offset, err := rs.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// final model type
|
||||
return &GGML{
|
||||
container: c,
|
||||
model: model,
|
||||
Length: offset,
|
||||
}, nil
|
||||
}
|
||||
|
||||
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string) (kv []uint64, partialOffload, fullOffload uint64) {
|
||||
embedding := f.KV().EmbeddingLength()
|
||||
heads := f.KV().HeadCount()
|
||||
headsKV := f.KV().HeadCountKV()
|
||||
vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array[string]).size)
|
||||
|
||||
embeddingHeads := f.KV().EmbeddingHeadCount()
|
||||
embeddingHeadsK := f.KV().EmbeddingHeadCountK()
|
||||
embeddingHeadsV := f.KV().EmbeddingHeadCountV()
|
||||
|
||||
layers := f.Tensors().GroupLayers()
|
||||
|
||||
bytesPerElement := kvCacheBytesPerElement(kvCacheType)
|
||||
kv = make([]uint64, f.KV().BlockCount())
|
||||
for i := range kv {
|
||||
kv[i] = uint64(float64(context*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
|
||||
}
|
||||
|
||||
switch f.KV().Architecture() {
|
||||
case "llama", "llama4":
|
||||
fullOffload = max(
|
||||
4*batch*(1+4*embedding+context*(1+heads)),
|
||||
4*batch*(embedding+vocab),
|
||||
)
|
||||
|
||||
partialOffload = 4 * batch * embedding
|
||||
partialOffload += max(
|
||||
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
)
|
||||
|
||||
if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
|
||||
// mixtral 8x22b
|
||||
ff := uint64(f.KV().Uint("feed_forward_length"))
|
||||
partialOffload = max(
|
||||
3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
|
||||
4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
|
||||
)
|
||||
} else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
|
||||
// mixtral 8x7b
|
||||
ffnGateWeight1 := ffnGateWeight.Shape[1]
|
||||
fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
|
||||
partialOffload = max(
|
||||
4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
|
||||
4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
|
||||
)
|
||||
}
|
||||
case "mllama":
|
||||
var visionTokens, tiles uint64 = 1601, 4
|
||||
|
||||
crossAttentionLayers := f.KV().Ints("attention.cross_attention_layers")
|
||||
for i := range kv {
|
||||
if slices.Contains(crossAttentionLayers, int32(i)) {
|
||||
kv[i] = headsKV * (embeddingHeadsK + embeddingHeadsV) *
|
||||
4 * // sizeof(float32)
|
||||
visionTokens *
|
||||
tiles
|
||||
}
|
||||
}
|
||||
|
||||
fullOffload = max(
|
||||
4*batch*(2+3*embedding+embeddingHeadsK*heads+context*(1+heads)),
|
||||
// vocab graph
|
||||
4*batch*(embedding+vocab),
|
||||
)
|
||||
|
||||
var ropeFreqsCount uint64
|
||||
if ropeFreqs, ok := f.Tensors().GroupLayers()["rope_freqs"]; ok {
|
||||
if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
|
||||
ropeFreqsCount = ropeFreqsWeights.Elements()
|
||||
}
|
||||
}
|
||||
|
||||
partialOffload = max(
|
||||
4*(batch*
|
||||
(2*embedding+1+context*(1+heads)+embeddingHeadsK*heads)+
|
||||
ropeFreqsCount+
|
||||
embeddingHeadsK*context*headsKV),
|
||||
// vocab graph
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
)
|
||||
case "gemma", "gemma2", "gemma3":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
|
||||
4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
|
||||
4*embeddingHeadsK*context*8+
|
||||
embedding*embeddingHeadsK*heads*9/16,
|
||||
)
|
||||
|
||||
// Gemma2 also has sliding window attention but we only have an optimized implementation in the Ollama
|
||||
// engine. Gemma3 always uses the Ollama engine.
|
||||
if f.KV().Architecture() == "gemma3" {
|
||||
const gemma3GlobalCacheCount = 6
|
||||
slidingWindow := (uint64(numParallel) * uint64(f.KV().Uint("attention.sliding_window"))) + batch
|
||||
for i := range kv {
|
||||
// Every 6th layer is a global layer, which is the full context size that has already been set. The other
|
||||
// layers are the smaller local (sliding) layers.
|
||||
if (i+1)%gemma3GlobalCacheCount != 0 {
|
||||
kv[i] = uint64(float64(slidingWindow*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
|
||||
}
|
||||
}
|
||||
}
|
||||
case "command-r":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(2+4*embedding+context*(1+heads)),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
|
||||
)
|
||||
case "qwen2":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(1+2*embedding+context+context*heads),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
|
||||
)
|
||||
case "phi2":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(1+4*embedding+context+context*heads),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
|
||||
4*batch*(2+3*embedding+context+context*heads),
|
||||
)
|
||||
case "stablelm":
|
||||
fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
|
||||
partialOffload = max(
|
||||
4*batch*(vocab+2*embedding),
|
||||
fullOffload,
|
||||
)
|
||||
case "deepseek2":
|
||||
fullOffload = max(
|
||||
4*batch*(3*embedding+vocab),
|
||||
4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
|
||||
4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
|
||||
)
|
||||
case "chatglm":
|
||||
fullOffload = 4 * batch * (embedding + vocab)
|
||||
partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
|
||||
if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
|
||||
fullOffload = max(
|
||||
fullOffload,
|
||||
4*batch*(2+
|
||||
2*embedding+
|
||||
context+
|
||||
context*heads+
|
||||
embeddingHeadsK*heads+
|
||||
qkvBias.Shape[0]),
|
||||
)
|
||||
|
||||
partialOffload = max(
|
||||
partialOffload,
|
||||
4*batch*(1+
|
||||
2*embedding+
|
||||
embeddingHeadsK*heads+
|
||||
context+
|
||||
context*heads)+
|
||||
4*embeddingHeadsK*context+
|
||||
4*context*embeddingHeadsK+
|
||||
4*qkvBias.Shape[0],
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
|
||||
if llm.KV().Uint("vision.block_count") == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
for name, layer := range llm.Tensors().GroupLayers() {
|
||||
if name == "v" || strings.HasPrefix(name, "v.") {
|
||||
for _, tensor := range layer {
|
||||
weights += tensor.Size()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
imageSize := uint64(llm.KV().Uint("vision.image_size"))
|
||||
patchSize := uint64(llm.KV().Uint("vision.patch_size"))
|
||||
if patchSize == 0 {
|
||||
slog.Warn("unknown patch size for vision model")
|
||||
return
|
||||
}
|
||||
|
||||
numChannels := uint64(llm.KV().Uint("vision.num_channels"))
|
||||
|
||||
numPatches := (imageSize / patchSize) * (imageSize / patchSize)
|
||||
if _, ok := llm.Tensors().GroupLayers()["v"]["class_embd"]; ok {
|
||||
numPatches++
|
||||
}
|
||||
|
||||
headCount := uint64(llm.KV().Uint("vision.attention.head_count"))
|
||||
embeddingLength := uint64(llm.KV().Uint("vision.embedding_length"))
|
||||
|
||||
switch llm.KV().Architecture() {
|
||||
case "mllama":
|
||||
numPaddedPatches := numPatches + 8 - (numPatches%8)%8
|
||||
|
||||
maxNumTiles := uint64(llm.KV().Uint("vision.max_num_tiles"))
|
||||
|
||||
graphSize = 4 * (8 +
|
||||
imageSize*imageSize*numChannels*maxNumTiles +
|
||||
embeddingLength*numPatches*maxNumTiles +
|
||||
9*embeddingLength*numPaddedPatches*maxNumTiles +
|
||||
numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
|
||||
case "gemma3", "mistral3":
|
||||
graphSize = 4 * (imageSize*imageSize*numChannels +
|
||||
embeddingLength*patchSize +
|
||||
numPatches*numPatches*headCount)
|
||||
case "qwen25vl":
|
||||
maxPixels := uint64(llm.KV().Uint("vision.max_pixels", 28*28*1280))
|
||||
|
||||
numPatches := maxPixels / (patchSize * patchSize)
|
||||
|
||||
graphSize = 4 * (maxPixels*numChannels + // Original image storage
|
||||
// Normalized pixels
|
||||
maxPixels*numChannels +
|
||||
// Patches storage (numPatches * channels * patchSize^2)
|
||||
numPatches*numChannels*patchSize*patchSize +
|
||||
// Self-attention calculations
|
||||
numPatches*numPatches*headCount +
|
||||
// Additional buffer for processing
|
||||
embeddingLength*numPatches)
|
||||
case "llama4":
|
||||
// vision graph is computed independently in the same schedule
|
||||
// and is negligible compared to the worst case text graph
|
||||
}
|
||||
|
||||
return weights, graphSize
|
||||
}
|
||||
|
||||
// SupportsKVCacheType checks if the requested cache type is supported
|
||||
func (f GGML) SupportsKVCacheType(cacheType string) bool {
|
||||
return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
|
||||
}
|
||||
|
||||
// SupportsFlashAttention checks if the model supports flash attention
|
||||
func (f GGML) SupportsFlashAttention() bool {
|
||||
_, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]
|
||||
if isEmbedding {
|
||||
return false
|
||||
}
|
||||
|
||||
// Check head counts match and are non-zero
|
||||
headCountK := f.KV().EmbeddingHeadCountK()
|
||||
headCountV := f.KV().EmbeddingHeadCountV()
|
||||
return headCountK != 0 && headCountV != 0 && headCountK == headCountV
|
||||
}
|
||||
|
||||
// kvCacheBytesPerElement returns the number of bytes per element for a given KV cache type
|
||||
func kvCacheBytesPerElement(cacheType string) float64 {
|
||||
switch cacheType {
|
||||
case "q8_0":
|
||||
return 1 // 1/2 of fp16
|
||||
case "q4_0":
|
||||
return 0.5 // 1/4 of fp16
|
||||
default:
|
||||
return 2 // f16 (default)
|
||||
}
|
||||
}
|
||||
271
fs/ggml/ggml_test.go
Normal file
271
fs/ggml/ggml_test.go
Normal file
@@ -0,0 +1,271 @@
|
||||
package ggml
|
||||
|
||||
import (
|
||||
"maps"
|
||||
"math"
|
||||
"slices"
|
||||
"strconv"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
)
|
||||
|
||||
func TestTensorLayers(t *testing.T) {
|
||||
tensors := make(map[string]*Tensor)
|
||||
for _, name := range []string{
|
||||
"token_embd.weight",
|
||||
"blk.0.attn_k.weight",
|
||||
"blk.0.attn_output.weight",
|
||||
"blk.0.attn_q.weight",
|
||||
"blk.0.attn_v.weight",
|
||||
"blk.0.attn_norm.weight",
|
||||
"blk.0.ffn_down.weight",
|
||||
"blk.0.ffn_gate.weight",
|
||||
"blk.0.ffn_up.weight",
|
||||
"blk.0.ffn_norm.weight",
|
||||
"output_norm.weight",
|
||||
"mm.0.bias",
|
||||
"mm.0.weight",
|
||||
"v.blk.0.attn_k.weight",
|
||||
"v.blk.0.attn_output.weight",
|
||||
"v.blk.0.attn_q.weight",
|
||||
"v.blk.0.attn_v.weight",
|
||||
"v.blk.0.attn_norm.weight",
|
||||
"v.blk.0.ffn_down.weight",
|
||||
"v.blk.0.ffn_gate.weight",
|
||||
"v.blk.0.ffn_up.weight",
|
||||
"v.blk.0.ffn_norm.weight",
|
||||
"v.patch_embd.weight",
|
||||
"v.position_embd.gate",
|
||||
"v.position_embd.weight",
|
||||
} {
|
||||
tensors[name] = &Tensor{Name: name}
|
||||
}
|
||||
|
||||
cases := []struct {
|
||||
name string
|
||||
items []*Tensor
|
||||
want map[string]Layer
|
||||
}{
|
||||
{
|
||||
name: "text",
|
||||
items: slices.Collect(func(yield func(*Tensor) bool) {
|
||||
for k, v := range tensors {
|
||||
if !strings.HasPrefix(k, "mm.") && !strings.HasPrefix(k, "v.") {
|
||||
if !yield(v) {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}),
|
||||
want: map[string]Layer{
|
||||
"blk.0": {
|
||||
"attn_k.weight": tensors["blk.0.attn_k.weight"],
|
||||
"attn_q.weight": tensors["blk.0.attn_q.weight"],
|
||||
"attn_v.weight": tensors["blk.0.attn_v.weight"],
|
||||
"attn_output.weight": tensors["blk.0.attn_output.weight"],
|
||||
"attn_norm.weight": tensors["blk.0.attn_norm.weight"],
|
||||
"ffn_down.weight": tensors["blk.0.ffn_down.weight"],
|
||||
"ffn_gate.weight": tensors["blk.0.ffn_gate.weight"],
|
||||
"ffn_up.weight": tensors["blk.0.ffn_up.weight"],
|
||||
"ffn_norm.weight": tensors["blk.0.ffn_norm.weight"],
|
||||
},
|
||||
"token_embd": {"weight": tensors["token_embd.weight"]},
|
||||
"output_norm": {"weight": tensors["output_norm.weight"]},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "vision",
|
||||
items: slices.Collect(func(yield func(*Tensor) bool) {
|
||||
for k, v := range tensors {
|
||||
if strings.HasPrefix(k, "mm.") || strings.HasPrefix(k, "v.") {
|
||||
if !yield(v) {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}),
|
||||
want: map[string]Layer{
|
||||
"mm.0": {
|
||||
"bias": tensors["mm.0.bias"],
|
||||
"weight": tensors["mm.0.weight"],
|
||||
},
|
||||
"v.blk.0": {
|
||||
"attn_k.weight": tensors["v.blk.0.attn_k.weight"],
|
||||
"attn_q.weight": tensors["v.blk.0.attn_q.weight"],
|
||||
"attn_v.weight": tensors["v.blk.0.attn_v.weight"],
|
||||
"attn_output.weight": tensors["v.blk.0.attn_output.weight"],
|
||||
"attn_norm.weight": tensors["v.blk.0.attn_norm.weight"],
|
||||
"ffn_down.weight": tensors["v.blk.0.ffn_down.weight"],
|
||||
"ffn_gate.weight": tensors["v.blk.0.ffn_gate.weight"],
|
||||
"ffn_up.weight": tensors["v.blk.0.ffn_up.weight"],
|
||||
"ffn_norm.weight": tensors["v.blk.0.ffn_norm.weight"],
|
||||
},
|
||||
"v": {
|
||||
"patch_embd.weight": tensors["v.patch_embd.weight"],
|
||||
"position_embd.gate": tensors["v.position_embd.gate"],
|
||||
"position_embd.weight": tensors["v.position_embd.weight"],
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "vision and text",
|
||||
items: slices.Collect(maps.Values(tensors)),
|
||||
want: map[string]Layer{
|
||||
"blk.0": {
|
||||
"attn_k.weight": tensors["blk.0.attn_k.weight"],
|
||||
"attn_q.weight": tensors["blk.0.attn_q.weight"],
|
||||
"attn_v.weight": tensors["blk.0.attn_v.weight"],
|
||||
"attn_output.weight": tensors["blk.0.attn_output.weight"],
|
||||
"attn_norm.weight": tensors["blk.0.attn_norm.weight"],
|
||||
"ffn_down.weight": tensors["blk.0.ffn_down.weight"],
|
||||
"ffn_gate.weight": tensors["blk.0.ffn_gate.weight"],
|
||||
"ffn_up.weight": tensors["blk.0.ffn_up.weight"],
|
||||
"ffn_norm.weight": tensors["blk.0.ffn_norm.weight"],
|
||||
},
|
||||
"token_embd": {"weight": tensors["token_embd.weight"]},
|
||||
"output_norm": {"weight": tensors["output_norm.weight"]},
|
||||
"mm.0": {
|
||||
"bias": tensors["mm.0.bias"],
|
||||
"weight": tensors["mm.0.weight"],
|
||||
},
|
||||
"v.blk.0": {
|
||||
"attn_k.weight": tensors["v.blk.0.attn_k.weight"],
|
||||
"attn_q.weight": tensors["v.blk.0.attn_q.weight"],
|
||||
"attn_v.weight": tensors["v.blk.0.attn_v.weight"],
|
||||
"attn_output.weight": tensors["v.blk.0.attn_output.weight"],
|
||||
"attn_norm.weight": tensors["v.blk.0.attn_norm.weight"],
|
||||
"ffn_down.weight": tensors["v.blk.0.ffn_down.weight"],
|
||||
"ffn_gate.weight": tensors["v.blk.0.ffn_gate.weight"],
|
||||
"ffn_up.weight": tensors["v.blk.0.ffn_up.weight"],
|
||||
"ffn_norm.weight": tensors["v.blk.0.ffn_norm.weight"],
|
||||
},
|
||||
"v": {
|
||||
"patch_embd.weight": tensors["v.patch_embd.weight"],
|
||||
"position_embd.gate": tensors["v.position_embd.gate"],
|
||||
"position_embd.weight": tensors["v.position_embd.weight"],
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
got := Tensors{items: tt.items}.GroupLayers()
|
||||
if diff := cmp.Diff(got, tt.want); diff != "" {
|
||||
t.Errorf("unexpected layers (-got +want):\n%s", diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// ref: https://github.com/ggml-org/llama.cpp/blob/a82c9e7c23ef6db48cebfa194dc9cebbc4ac3552/ggml/src/ggml.c#L572
|
||||
func TestTensorTypes(t *testing.T) {
|
||||
cases := []struct {
|
||||
kind uint32
|
||||
blockSize uint64
|
||||
typeSize uint64
|
||||
}{
|
||||
{0, 1, 4},
|
||||
{1, 1, 2},
|
||||
{2, 32, 18},
|
||||
{3, 32, 20},
|
||||
{6, 32, 22},
|
||||
{7, 32, 24},
|
||||
{8, 32, 34},
|
||||
{9, 32, 36},
|
||||
{10, 256, 84},
|
||||
{11, 256, 110},
|
||||
{12, 256, 144},
|
||||
{13, 256, 176},
|
||||
{14, 256, 210},
|
||||
{15, 256, 292},
|
||||
{16, 256, 66},
|
||||
{17, 256, 74},
|
||||
{18, 256, 98},
|
||||
{19, 256, 50},
|
||||
{20, 32, 18},
|
||||
{21, 256, 110},
|
||||
{22, 256, 82},
|
||||
{23, 256, 136},
|
||||
{24, 1, 1},
|
||||
{25, 1, 2},
|
||||
{26, 1, 4},
|
||||
{27, 1, 8},
|
||||
{28, 1, 8},
|
||||
{29, 256, 56},
|
||||
{30, 1, 2},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
t.Run(strconv.Itoa(int(tt.kind)), func(t *testing.T) {
|
||||
tensor := Tensor{Kind: tt.kind}
|
||||
if tensor.blockSize() != tt.blockSize {
|
||||
t.Errorf("unexpected block size: got=%d want=%d", tensor.blockSize(), tt.blockSize)
|
||||
}
|
||||
|
||||
if tensor.typeSize() != tt.typeSize {
|
||||
t.Errorf("unexpected type size: got=%d want=%d", tensor.typeSize(), tt.typeSize)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestKeyValue(t *testing.T) {
|
||||
kv := KV{
|
||||
"general.architecture": "test",
|
||||
"test.strings": &array[string]{size: 3, values: []string{"a", "b", "c"}},
|
||||
"test.float32s": &array[float32]{size: 3, values: []float32{1.0, 2.0, 3.0}},
|
||||
"test.int32s": &array[int32]{size: 3, values: []int32{1, 2, 3}},
|
||||
"test.uint32s": &array[uint32]{size: 3, values: []uint32{1, 2, 3}},
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Strings("strings"), []string{"a", "b", "c"}); diff != "" {
|
||||
t.Errorf("unexpected strings (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Strings("nonexistent.strings"), []string(nil)); diff != "" {
|
||||
t.Errorf("unexpected strings (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Strings("default.strings", []string{"ollama"}), []string{"ollama"}); diff != "" {
|
||||
t.Errorf("unexpected strings (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Floats("float32s"), []float32{1.0, 2.0, 3.0}); diff != "" {
|
||||
t.Errorf("unexpected float32s (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Floats("nonexistent.float32s"), []float32(nil)); diff != "" {
|
||||
t.Errorf("unexpected float32s (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Floats("default.float32s", []float32{math.MaxFloat32}), []float32{math.MaxFloat32}); diff != "" {
|
||||
t.Errorf("unexpected float32s (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Ints("int32s"), []int32{1, 2, 3}); diff != "" {
|
||||
t.Errorf("unexpected int8s (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Ints("nonexistent.int32s"), []int32(nil)); diff != "" {
|
||||
t.Errorf("unexpected int8s (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Ints("default.int32s", []int32{math.MaxInt32}), []int32{math.MaxInt32}); diff != "" {
|
||||
t.Errorf("unexpected int8s (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Uints("uint32s"), []uint32{1, 2, 3}); diff != "" {
|
||||
t.Errorf("unexpected uint8s (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Uints("nonexistent.uint32s"), []uint32(nil)); diff != "" {
|
||||
t.Errorf("unexpected uint8s (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Uints("default.uint32s", []uint32{math.MaxUint32}), []uint32{math.MaxUint32}); diff != "" {
|
||||
t.Errorf("unexpected uint8s (-got +want):\n%s", diff)
|
||||
}
|
||||
}
|
||||
@@ -1,4 +1,4 @@
|
||||
package llm
|
||||
package ggml
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
@@ -8,10 +8,13 @@ import (
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"maps"
|
||||
"os"
|
||||
"runtime"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"golang.org/x/exp/maps"
|
||||
"golang.org/x/sync/errgroup"
|
||||
)
|
||||
|
||||
type containerGGUF struct {
|
||||
@@ -37,10 +40,6 @@ type containerGGUF struct {
|
||||
maxArraySize int
|
||||
}
|
||||
|
||||
func (c *containerGGUF) canCollectArray(size int) bool {
|
||||
return c.maxArraySize < 0 || size <= c.maxArraySize
|
||||
}
|
||||
|
||||
func (c *containerGGUF) Name() string {
|
||||
return "gguf"
|
||||
}
|
||||
@@ -110,9 +109,9 @@ func (llm *gguf) KV() KV {
|
||||
return llm.kv
|
||||
}
|
||||
|
||||
func (llm *gguf) Tensors() *Tensors {
|
||||
return &Tensors{
|
||||
Items: llm.tensors,
|
||||
func (llm *gguf) Tensors() Tensors {
|
||||
return Tensors{
|
||||
items: llm.tensors,
|
||||
Offset: llm.tensorOffset,
|
||||
}
|
||||
}
|
||||
@@ -230,16 +229,13 @@ func (llm *gguf) Decode(rs io.ReadSeeker) error {
|
||||
}
|
||||
|
||||
llm.tensors = append(llm.tensors, &tensor)
|
||||
llm.parameters += tensor.parameters()
|
||||
llm.parameters += tensor.Elements()
|
||||
}
|
||||
|
||||
// patch KV with parameter count
|
||||
llm.kv["general.parameter_count"] = llm.parameters
|
||||
|
||||
alignment, ok := llm.kv["general.alignment"].(uint32)
|
||||
if !ok {
|
||||
alignment = 32
|
||||
}
|
||||
alignment := llm.kv.Uint("general.alignment", 32)
|
||||
|
||||
offset, err := rs.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
@@ -299,6 +295,23 @@ func readGGUFV1String(llm *gguf, r io.Reader) (string, error) {
|
||||
return b.String(), nil
|
||||
}
|
||||
|
||||
func readGGUFV1StringsData(llm *gguf, r io.Reader, a *array[string]) (any, error) {
|
||||
for i := range a.size {
|
||||
if a.values != nil {
|
||||
e, err := readGGUFV1String(llm, r)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
a.values[i] = e
|
||||
} else {
|
||||
discardGGUFString(llm, r)
|
||||
}
|
||||
}
|
||||
|
||||
return a, nil
|
||||
}
|
||||
|
||||
func discardGGUFString(llm *gguf, r io.Reader) error {
|
||||
buf := llm.scratch[:8]
|
||||
_, err := io.ReadFull(r, buf)
|
||||
@@ -356,78 +369,44 @@ func writeGGUFString(w io.Writer, s string) error {
|
||||
return err
|
||||
}
|
||||
|
||||
type array struct {
|
||||
size int
|
||||
values []any
|
||||
}
|
||||
|
||||
func (a *array) MarshalJSON() ([]byte, error) {
|
||||
return json.Marshal(a.values)
|
||||
}
|
||||
|
||||
func readGGUFV1Array(llm *gguf, r io.Reader) (*array, error) {
|
||||
t, err := readGGUF[uint32](llm, r)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
n, err := readGGUF[uint32](llm, r)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
a := &array{size: int(n)}
|
||||
if llm.canCollectArray(int(n)) {
|
||||
a.values = make([]any, 0, int(n))
|
||||
}
|
||||
|
||||
for i := range n {
|
||||
var e any
|
||||
switch t {
|
||||
case ggufTypeUint8:
|
||||
e, err = readGGUF[uint8](llm, r)
|
||||
case ggufTypeInt8:
|
||||
e, err = readGGUF[int8](llm, r)
|
||||
case ggufTypeUint16:
|
||||
e, err = readGGUF[uint16](llm, r)
|
||||
case ggufTypeInt16:
|
||||
e, err = readGGUF[int16](llm, r)
|
||||
case ggufTypeUint32:
|
||||
e, err = readGGUF[uint32](llm, r)
|
||||
case ggufTypeInt32:
|
||||
e, err = readGGUF[int32](llm, r)
|
||||
case ggufTypeUint64:
|
||||
e, err = readGGUF[uint64](llm, r)
|
||||
case ggufTypeInt64:
|
||||
e, err = readGGUF[int64](llm, r)
|
||||
case ggufTypeFloat32:
|
||||
e, err = readGGUF[float32](llm, r)
|
||||
case ggufTypeFloat64:
|
||||
e, err = readGGUF[float64](llm, r)
|
||||
case ggufTypeBool:
|
||||
e, err = readGGUF[bool](llm, r)
|
||||
case ggufTypeString:
|
||||
e, err = readGGUFV1String(llm, r)
|
||||
default:
|
||||
return nil, fmt.Errorf("invalid array type: %d", t)
|
||||
}
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
func readGGUFStringsData(llm *gguf, r io.Reader, a *array[string]) (any, error) {
|
||||
for i := range a.size {
|
||||
if a.values != nil {
|
||||
e, err := readGGUFString(llm, r)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
a.values[i] = e
|
||||
} else {
|
||||
discardGGUFString(llm, r)
|
||||
}
|
||||
}
|
||||
|
||||
return a, nil
|
||||
}
|
||||
|
||||
func readGGUFArray(llm *gguf, r io.Reader) (*array, error) {
|
||||
if llm.Version == 1 {
|
||||
return readGGUFV1Array(llm, r)
|
||||
}
|
||||
type array[T any] struct {
|
||||
// size is the actual size of the array
|
||||
size int
|
||||
|
||||
// values is the array of values. this is nil if the array is larger than configured maxSize
|
||||
values []T
|
||||
}
|
||||
|
||||
func (a *array[T]) MarshalJSON() ([]byte, error) {
|
||||
return json.Marshal(a.values)
|
||||
}
|
||||
|
||||
func newArray[T any](size, maxSize int) *array[T] {
|
||||
a := array[T]{size: size}
|
||||
if maxSize < 0 || size <= maxSize {
|
||||
a.values = make([]T, size)
|
||||
}
|
||||
return &a
|
||||
}
|
||||
|
||||
func readGGUFArray(llm *gguf, r io.Reader) (any, error) {
|
||||
t, err := readGGUF[uint32](llm, r)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
@@ -438,45 +417,55 @@ func readGGUFArray(llm *gguf, r io.Reader) (*array, error) {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
a := &array{size: int(n)}
|
||||
if llm.canCollectArray(int(n)) {
|
||||
a.values = make([]any, int(n))
|
||||
}
|
||||
|
||||
for i := range n {
|
||||
var e any
|
||||
switch t {
|
||||
case ggufTypeUint8:
|
||||
e, err = readGGUF[uint8](llm, r)
|
||||
case ggufTypeInt8:
|
||||
e, err = readGGUF[int8](llm, r)
|
||||
case ggufTypeUint16:
|
||||
e, err = readGGUF[uint16](llm, r)
|
||||
case ggufTypeInt16:
|
||||
e, err = readGGUF[int16](llm, r)
|
||||
case ggufTypeUint32:
|
||||
e, err = readGGUF[uint32](llm, r)
|
||||
case ggufTypeInt32:
|
||||
e, err = readGGUF[int32](llm, r)
|
||||
case ggufTypeUint64:
|
||||
e, err = readGGUF[uint64](llm, r)
|
||||
case ggufTypeInt64:
|
||||
e, err = readGGUF[int64](llm, r)
|
||||
case ggufTypeFloat32:
|
||||
e, err = readGGUF[float32](llm, r)
|
||||
case ggufTypeFloat64:
|
||||
e, err = readGGUF[float64](llm, r)
|
||||
case ggufTypeBool:
|
||||
e, err = readGGUF[bool](llm, r)
|
||||
case ggufTypeString:
|
||||
if a.values != nil {
|
||||
e, err = readGGUFString(llm, r)
|
||||
} else {
|
||||
err = discardGGUFString(llm, r)
|
||||
}
|
||||
default:
|
||||
return nil, fmt.Errorf("invalid array type: %d", t)
|
||||
switch t {
|
||||
case ggufTypeUint8:
|
||||
a := newArray[uint8](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeInt8:
|
||||
a := newArray[int8](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeUint16:
|
||||
a := newArray[uint16](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeInt16:
|
||||
a := newArray[int16](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeUint32:
|
||||
a := newArray[uint32](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeInt32:
|
||||
a := newArray[int32](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeUint64:
|
||||
a := newArray[uint64](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeInt64:
|
||||
a := newArray[int64](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeFloat32:
|
||||
a := newArray[float32](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeFloat64:
|
||||
a := newArray[float64](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeBool:
|
||||
a := newArray[bool](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeString:
|
||||
a := newArray[string](int(n), llm.maxArraySize)
|
||||
if llm.Version == 1 {
|
||||
return readGGUFV1StringsData(llm, r, a)
|
||||
}
|
||||
|
||||
return readGGUFStringsData(llm, r, a)
|
||||
default:
|
||||
return nil, fmt.Errorf("invalid array type: %d", t)
|
||||
}
|
||||
}
|
||||
|
||||
func readGGUFArrayData[T any](llm *gguf, r io.Reader, a *array[T]) (any, error) {
|
||||
for i := range a.size {
|
||||
e, err := readGGUF[T](llm, r)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -503,62 +492,83 @@ func writeGGUFArray[S ~[]E, E any](w io.Writer, t uint32, s S) error {
|
||||
return err
|
||||
}
|
||||
|
||||
if t == ggufTypeString {
|
||||
for _, e := range any(s).([]string) {
|
||||
if err := binary.Write(w, binary.LittleEndian, uint64(len(e))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(w, binary.LittleEndian, []byte(e)); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
return binary.Write(w, binary.LittleEndian, s)
|
||||
}
|
||||
|
||||
func WriteGGUF(ws io.WriteSeeker, kv KV, ts []Tensor) error {
|
||||
if err := binary.Write(ws, binary.LittleEndian, []byte("GGUF")); err != nil {
|
||||
func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
|
||||
alignment := kv.Uint("general.alignment", 32)
|
||||
|
||||
if err := binary.Write(f, binary.LittleEndian, []byte("GGUF")); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint32(3)); err != nil {
|
||||
if err := binary.Write(f, binary.LittleEndian, uint32(3)); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(ts))); err != nil {
|
||||
if err := binary.Write(f, binary.LittleEndian, uint64(len(ts))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(kv))); err != nil {
|
||||
if err := binary.Write(f, binary.LittleEndian, uint64(len(kv))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
keys := maps.Keys(kv)
|
||||
slices.Sort(keys)
|
||||
|
||||
for _, key := range keys {
|
||||
if err := ggufWriteKV(ws, key, kv[key]); err != nil {
|
||||
for _, key := range slices.Sorted(maps.Keys(kv)) {
|
||||
if err := ggufWriteKV(f, key, kv[key]); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
slices.SortStableFunc(ts, func(a, b Tensor) int {
|
||||
if i, j := a.block(), b.block(); i < 0 && j > 0 {
|
||||
return 1
|
||||
} else if i > 0 && j < 0 {
|
||||
return -1
|
||||
} else {
|
||||
slices.SortStableFunc(ts, func(a, b *Tensor) int {
|
||||
if i, j := a.block(), b.block(); i > 0 && j > 0 {
|
||||
return cmp.Compare(i, j)
|
||||
}
|
||||
return cmp.Compare(a.Name, b.Name)
|
||||
})
|
||||
|
||||
var s uint64
|
||||
for _, t := range ts {
|
||||
t.Offset = s
|
||||
if err := ggufWriteTensorInfo(ws, t); err != nil {
|
||||
for i := range ts {
|
||||
ts[i].Offset = s
|
||||
if err := ggufWriteTensorInfo(f, ts[i]); err != nil {
|
||||
return err
|
||||
}
|
||||
s += t.Size()
|
||||
s += ts[i].Size()
|
||||
s += uint64(ggufPadding(int64(s), int64(alignment)))
|
||||
}
|
||||
|
||||
var alignment int64 = 32
|
||||
offset, err := f.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
offset += ggufPadding(offset, int64(alignment))
|
||||
|
||||
var g errgroup.Group
|
||||
g.SetLimit(runtime.GOMAXPROCS(0))
|
||||
// TODO consider reducing if tensors size * gomaxprocs is larger than free memory
|
||||
for _, t := range ts {
|
||||
if err := ggufWriteTensor(ws, t, alignment); err != nil {
|
||||
t := t
|
||||
w := io.NewOffsetWriter(f, offset+int64(t.Offset))
|
||||
g.Go(func() error {
|
||||
_, err := t.WriteTo(w)
|
||||
return err
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
return nil
|
||||
return g.Wait()
|
||||
}
|
||||
|
||||
func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
|
||||
@@ -573,8 +583,10 @@ func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
|
||||
|
||||
var err error
|
||||
switch v := v.(type) {
|
||||
case uint32:
|
||||
case uint32, FileType:
|
||||
err = writeGGUF(ws, ggufTypeUint32, v)
|
||||
case uint64:
|
||||
err = writeGGUF(ws, ggufTypeUint64, v)
|
||||
case float32:
|
||||
err = writeGGUF(ws, ggufTypeFloat32, v)
|
||||
case bool:
|
||||
@@ -583,32 +595,20 @@ func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
|
||||
err = writeGGUFString(ws, v)
|
||||
case []int32:
|
||||
err = writeGGUFArray(ws, ggufTypeInt32, v)
|
||||
case *array[int32]:
|
||||
err = writeGGUFArray(ws, ggufTypeInt32, v.values)
|
||||
case []uint32:
|
||||
err = writeGGUFArray(ws, ggufTypeUint32, v)
|
||||
case *array[uint32]:
|
||||
err = writeGGUFArray(ws, ggufTypeUint32, v.values)
|
||||
case []float32:
|
||||
err = writeGGUFArray(ws, ggufTypeFloat32, v)
|
||||
case *array[float32]:
|
||||
err = writeGGUFArray(ws, ggufTypeFloat32, v.values)
|
||||
case []string:
|
||||
if err := binary.Write(ws, binary.LittleEndian, ggufTypeArray); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, ggufTypeString); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(v))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for _, e := range v {
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(e))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, []byte(e)); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
err = writeGGUFArray(ws, ggufTypeString, v)
|
||||
case *array[string]:
|
||||
err = writeGGUFArray(ws, ggufTypeString, v.values)
|
||||
default:
|
||||
return fmt.Errorf("improper type for '%s'", k)
|
||||
}
|
||||
@@ -616,7 +616,7 @@ func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
|
||||
return err
|
||||
}
|
||||
|
||||
func ggufWriteTensorInfo(ws io.WriteSeeker, t Tensor) error {
|
||||
func ggufWriteTensorInfo(ws io.WriteSeeker, t *Tensor) error {
|
||||
slog.Debug(t.Name, "kind", t.Kind, "shape", t.Shape, "offset", t.Offset)
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(t.Name))); err != nil {
|
||||
return err
|
||||
@@ -630,8 +630,8 @@ func ggufWriteTensorInfo(ws io.WriteSeeker, t Tensor) error {
|
||||
return err
|
||||
}
|
||||
|
||||
for i := range len(t.Shape) {
|
||||
if err := binary.Write(ws, binary.LittleEndian, t.Shape[len(t.Shape)-i-1]); err != nil {
|
||||
for _, n := range t.Shape {
|
||||
if err := binary.Write(ws, binary.LittleEndian, n); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
@@ -643,20 +643,6 @@ func ggufWriteTensorInfo(ws io.WriteSeeker, t Tensor) error {
|
||||
return binary.Write(ws, binary.LittleEndian, t.Offset)
|
||||
}
|
||||
|
||||
func ggufWriteTensor(ws io.WriteSeeker, t Tensor, alignment int64) error {
|
||||
offset, err := ws.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, bytes.Repeat([]byte{0}, int(ggufPadding(offset, alignment)))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
_, err = t.WriteTo(ws)
|
||||
return err
|
||||
}
|
||||
|
||||
func ggufPadding(offset, align int64) int64 {
|
||||
return (align - offset%align) % align
|
||||
}
|
||||
83
fs/ggml/gguf_test.go
Normal file
83
fs/ggml/gguf_test.go
Normal file
@@ -0,0 +1,83 @@
|
||||
package ggml
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"math/rand/v2"
|
||||
"os"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
)
|
||||
|
||||
func TestWriteGGUF(t *testing.T) {
|
||||
r := rand.New(rand.NewPCG(0, 0))
|
||||
for range 8 {
|
||||
t.Run("shuffle", func(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
ts := []*Tensor{
|
||||
{Name: "token_embd.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
|
||||
{Name: "blk.0.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
|
||||
{Name: "blk.1.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
|
||||
{Name: "blk.2.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
|
||||
{Name: "blk.3.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
|
||||
{Name: "blk.4.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
|
||||
{Name: "blk.5.attn_norm.weight", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(make([]byte, 2*3))},
|
||||
{Name: "output_norm.weight", Shape: []uint64{3, 2}, WriterTo: bytes.NewBuffer(make([]byte, 3*2))},
|
||||
{Name: "output.weight", Shape: []uint64{3, 2}, WriterTo: bytes.NewBuffer(make([]byte, 3*2))},
|
||||
}
|
||||
|
||||
r.Shuffle(len(ts), func(i, j int) {
|
||||
ts[i], ts[j] = ts[j], ts[i]
|
||||
})
|
||||
|
||||
w, err := os.CreateTemp(t.TempDir(), strings.ReplaceAll(t.Name(), "/", "_")+"*.bin")
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer w.Close()
|
||||
|
||||
if err := WriteGGUF(w, KV{
|
||||
"general.alignment": uint32(16),
|
||||
}, ts); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
r, err := os.Open(w.Name())
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer r.Close()
|
||||
|
||||
ff, err := Decode(r, 0)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(KV{
|
||||
"general.alignment": uint32(16),
|
||||
"general.parameter_count": uint64(54),
|
||||
}, ff.KV()); diff != "" {
|
||||
t.Errorf("Mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(Tensors{
|
||||
Offset: 608,
|
||||
items: []*Tensor{
|
||||
{Name: "blk.0.attn_norm.weight", Offset: 0, Shape: []uint64{2, 3}},
|
||||
{Name: "blk.1.attn_norm.weight", Offset: 32, Shape: []uint64{2, 3}},
|
||||
{Name: "blk.2.attn_norm.weight", Offset: 64, Shape: []uint64{2, 3}},
|
||||
{Name: "blk.3.attn_norm.weight", Offset: 96, Shape: []uint64{2, 3}},
|
||||
{Name: "blk.4.attn_norm.weight", Offset: 128, Shape: []uint64{2, 3}},
|
||||
{Name: "blk.5.attn_norm.weight", Offset: 160, Shape: []uint64{2, 3}},
|
||||
{Name: "output.weight", Offset: 192, Shape: []uint64{3, 2}},
|
||||
{Name: "output_norm.weight", Offset: 224, Shape: []uint64{3, 2}},
|
||||
{Name: "token_embd.weight", Offset: 256, Shape: []uint64{2, 3}},
|
||||
},
|
||||
}, ff.Tensors(), cmp.AllowUnexported(Tensors{})); diff != "" {
|
||||
t.Errorf("Mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
318
fs/ggml/type.go
Normal file
318
fs/ggml/type.go
Normal file
@@ -0,0 +1,318 @@
|
||||
package ggml
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// FileType is the Go equivalent to llama_ftype used for gguf file typing
|
||||
type FileType uint32
|
||||
|
||||
const (
|
||||
FileTypeF32 FileType = iota
|
||||
FileTypeF16
|
||||
fileTypeQ4_0
|
||||
fileTypeQ4_1
|
||||
fileTypeQ4_1_F16 // unused by GGML
|
||||
fileTypeQ4_2 // unused by GGML
|
||||
fileTypeQ4_3 // unused by GGML
|
||||
FileTypeQ8_0
|
||||
fileTypeQ5_0
|
||||
fileTypeQ5_1
|
||||
fileTypeQ2_K
|
||||
fileTypeQ3_K_S
|
||||
fileTypeQ3_K_M
|
||||
fileTypeQ3_K_L
|
||||
FileTypeQ4_K_S
|
||||
FileTypeQ4_K_M
|
||||
fileTypeQ5_K_S
|
||||
fileTypeQ5_K_M
|
||||
fileTypeQ6_K
|
||||
fileTypeIQ2_XXS
|
||||
fileTypeIQ2_XS
|
||||
fileTypeQ2_K_S
|
||||
fileTypeIQ3_XS
|
||||
fileTypeIQ3_XXS
|
||||
fileTypeIQ1_S
|
||||
fileTypeIQ4_NL
|
||||
fileTypeIQ3_S
|
||||
fileTypeIQ3_M
|
||||
fileTypeIQ2_S
|
||||
fileTypeIQ2_M
|
||||
fileTypeIQ4_XS
|
||||
fileTypeIQ1_M
|
||||
FileTypeBF16
|
||||
fileTypeQ4_0_4_4 // unused by GGML
|
||||
fileTypeQ4_0_4_8 // unused by GGML
|
||||
fileTypeQ4_0_8_8 // unused by GGML
|
||||
fileTypeTQ1_0
|
||||
fileTypeTQ2_0
|
||||
|
||||
FileTypeUnknown = 1024
|
||||
)
|
||||
|
||||
// ParseFileType parses the provided GGUF file type
|
||||
// Only Ollama supported types are considered valid
|
||||
func ParseFileType(s string) (FileType, error) {
|
||||
switch s {
|
||||
case "F32":
|
||||
return FileTypeF32, nil
|
||||
case "F16":
|
||||
return FileTypeF16, nil
|
||||
case "Q8_0":
|
||||
return FileTypeQ8_0, nil
|
||||
case "Q4_K_S":
|
||||
return FileTypeQ4_K_S, nil
|
||||
case "Q4_K_M", "Q4_K":
|
||||
return FileTypeQ4_K_M, nil
|
||||
case "BF16":
|
||||
return FileTypeBF16, nil
|
||||
default:
|
||||
supportedFileTypes := []FileType{
|
||||
FileTypeF32,
|
||||
FileTypeF16,
|
||||
FileTypeQ4_K_S,
|
||||
FileTypeQ4_K_M,
|
||||
FileTypeQ8_0,
|
||||
// fsggml.FileTypeBF16, // TODO
|
||||
}
|
||||
strs := make([]string, len(supportedFileTypes))
|
||||
for i := range supportedFileTypes {
|
||||
strs[i] = supportedFileTypes[i].String()
|
||||
}
|
||||
|
||||
return FileTypeUnknown, fmt.Errorf("unsupported quantization type %s - supported types are %s", s, strings.Join(strs, ", "))
|
||||
}
|
||||
}
|
||||
|
||||
func (t FileType) String() string {
|
||||
// Note: this routine will return a broader set of file types for existing models
|
||||
switch t {
|
||||
case FileTypeF32:
|
||||
return "F32"
|
||||
case FileTypeF16:
|
||||
return "F16"
|
||||
case fileTypeQ4_0:
|
||||
return "Q4_0"
|
||||
case fileTypeQ4_1:
|
||||
return "Q4_1"
|
||||
case FileTypeQ8_0:
|
||||
return "Q8_0"
|
||||
case fileTypeQ5_0:
|
||||
return "Q5_0"
|
||||
case fileTypeQ5_1:
|
||||
return "Q5_1"
|
||||
case fileTypeQ2_K:
|
||||
return "Q2_K"
|
||||
case fileTypeQ3_K_S:
|
||||
return "Q3_K_S"
|
||||
case fileTypeQ3_K_M:
|
||||
return "Q3_K_M"
|
||||
case fileTypeQ3_K_L:
|
||||
return "Q3_K_L"
|
||||
case FileTypeQ4_K_S:
|
||||
return "Q4_K_S"
|
||||
case FileTypeQ4_K_M:
|
||||
return "Q4_K_M"
|
||||
case fileTypeQ5_K_S:
|
||||
return "Q5_K_S"
|
||||
case fileTypeQ5_K_M:
|
||||
return "Q5_K_M"
|
||||
case fileTypeQ6_K:
|
||||
return "Q6_K"
|
||||
case fileTypeQ2_K_S:
|
||||
return "Q2_K_S"
|
||||
case FileTypeBF16:
|
||||
return "BF16"
|
||||
default:
|
||||
return "unknown"
|
||||
}
|
||||
}
|
||||
|
||||
func (t FileType) Value() uint32 {
|
||||
return uint32(t)
|
||||
}
|
||||
|
||||
func (ftype FileType) ToTensorType() TensorType {
|
||||
switch ftype {
|
||||
case FileTypeF32:
|
||||
return TensorTypeF32
|
||||
case FileTypeF16:
|
||||
return TensorTypeF16
|
||||
case fileTypeQ4_0:
|
||||
return TensorTypeQ4_0
|
||||
case fileTypeQ4_1:
|
||||
return TensorTypeQ4_1
|
||||
case FileTypeQ8_0:
|
||||
return TensorTypeQ8_0
|
||||
case fileTypeQ5_0:
|
||||
return TensorTypeQ5_0
|
||||
case fileTypeQ5_1:
|
||||
return TensorTypeQ5_1
|
||||
case fileTypeQ2_K:
|
||||
return TensorTypeQ2_K
|
||||
case fileTypeQ3_K_S:
|
||||
return TensorTypeQ3_K
|
||||
case fileTypeQ3_K_M:
|
||||
return TensorTypeQ3_K
|
||||
case fileTypeQ3_K_L:
|
||||
return TensorTypeQ3_K
|
||||
case FileTypeQ4_K_S:
|
||||
return TensorTypeQ4_K
|
||||
case FileTypeQ4_K_M:
|
||||
return TensorTypeQ4_K
|
||||
case fileTypeQ5_K_S:
|
||||
return TensorTypeQ5_K
|
||||
case fileTypeQ5_K_M:
|
||||
return TensorTypeQ5_K
|
||||
case fileTypeQ6_K:
|
||||
return TensorTypeQ6_K
|
||||
case fileTypeQ2_K_S:
|
||||
return TensorTypeQ2_K
|
||||
case FileTypeBF16:
|
||||
return TensorTypeBF16
|
||||
default:
|
||||
slog.Warn("unsupported file type", "type", ftype)
|
||||
return 0 // F32
|
||||
}
|
||||
}
|
||||
|
||||
// TensorType is equivalent to ggml_type for individual tensor types
|
||||
// Note: these are not the same as FileType
|
||||
type TensorType uint32
|
||||
|
||||
const (
|
||||
TensorTypeF32 TensorType = iota
|
||||
TensorTypeF16
|
||||
TensorTypeQ4_0
|
||||
TensorTypeQ4_1
|
||||
tensorTypeQ4_2 // unused by GGML
|
||||
tensorTypeQ4_3 // unused by GGML
|
||||
TensorTypeQ5_0
|
||||
TensorTypeQ5_1
|
||||
TensorTypeQ8_0
|
||||
TensorTypeQ8_1
|
||||
TensorTypeQ2_K
|
||||
TensorTypeQ3_K
|
||||
TensorTypeQ4_K
|
||||
TensorTypeQ5_K
|
||||
TensorTypeQ6_K
|
||||
TensorTypeQ8_K
|
||||
tensorTypeIQ2_XXS // not supported by ollama
|
||||
tensorTypeIQ2_XS // not supported by ollama
|
||||
tensorTypeIQ3_XXS // not supported by ollama
|
||||
tensorTypeIQ1_S // not supported by ollama
|
||||
tensorTypeIQ4_NL // not supported by ollama
|
||||
tensorTypeIQ3_S // not supported by ollama
|
||||
tensorTypeIQ2_S // not supported by ollama
|
||||
tensorTypeIQ4_XS // not supported by ollama
|
||||
TensorTypeI8
|
||||
TensorTypeI16
|
||||
TensorTypeI32
|
||||
TensorTypeI64
|
||||
TensorTypeF64
|
||||
tensorTypeIQ1_M // not supported by ollama
|
||||
TensorTypeBF16
|
||||
tensorTypeQ4_0_4_4 // unused by GGML
|
||||
tensorTypeQ4_0_4_8 // unused by GGML
|
||||
tensorTypeQ4_0_8_8 // unused by GGML
|
||||
tensorTypeTQ1_0 // not supported by ollama
|
||||
tensorTypeTQ2_0 // not supported by ollama
|
||||
tensorTypeIQ4_NL_4_4 // unused by GGML
|
||||
tensorTypeIQ4_NL_4_8 // unused by GGML
|
||||
tensorTypeIQ4_NL_8_8 // unused by GGML
|
||||
)
|
||||
|
||||
// ParseFileType parses the provided GGUF file type
|
||||
// Only Ollama supported types are considered valid
|
||||
func ParseTensorType(s string) (TensorType, error) {
|
||||
switch s {
|
||||
case "F32":
|
||||
return TensorTypeF32, nil
|
||||
case "F16":
|
||||
return TensorTypeF16, nil
|
||||
case "Q4_0":
|
||||
return TensorTypeQ4_0, nil
|
||||
case "Q4_1":
|
||||
return TensorTypeQ4_1, nil
|
||||
case "Q5_0":
|
||||
return TensorTypeQ5_0, nil
|
||||
case "Q5_1":
|
||||
return TensorTypeQ5_1, nil
|
||||
case "Q8_0":
|
||||
return TensorTypeQ8_0, nil
|
||||
case "Q8_1":
|
||||
return TensorTypeQ8_1, nil
|
||||
case "Q2_K":
|
||||
return TensorTypeQ2_K, nil
|
||||
case "Q3_K":
|
||||
return TensorTypeQ3_K, nil
|
||||
case "Q4_K":
|
||||
return TensorTypeQ4_K, nil
|
||||
case "Q5_K":
|
||||
return TensorTypeQ5_K, nil
|
||||
case "Q6_K":
|
||||
return TensorTypeQ6_K, nil
|
||||
case "Q8_K":
|
||||
return TensorTypeQ8_K, nil
|
||||
case "F64":
|
||||
return TensorTypeF64, nil
|
||||
case "BF16":
|
||||
return TensorTypeBF16, nil
|
||||
default:
|
||||
return 0, fmt.Errorf("unsupported quantization type %s", s)
|
||||
}
|
||||
}
|
||||
|
||||
func (t TensorType) IsQuantized() bool {
|
||||
switch t {
|
||||
case TensorTypeF32, TensorTypeF16, TensorTypeBF16:
|
||||
return false
|
||||
default:
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
func (t TensorType) RowSize(ne uint64) uint64 {
|
||||
return t.TypeSize() * ne / t.BlockSize()
|
||||
}
|
||||
|
||||
func (t TensorType) String() string {
|
||||
switch t {
|
||||
case TensorTypeF32:
|
||||
return "F32"
|
||||
case TensorTypeF16:
|
||||
return "F16"
|
||||
case TensorTypeQ4_0:
|
||||
return "Q4_0"
|
||||
case TensorTypeQ4_1:
|
||||
return "Q4_1"
|
||||
case TensorTypeQ5_0:
|
||||
return "Q5_0"
|
||||
case TensorTypeQ5_1:
|
||||
return "Q5_1"
|
||||
case TensorTypeQ8_0:
|
||||
return "Q8_0"
|
||||
case TensorTypeQ8_1:
|
||||
return "Q8_1"
|
||||
case TensorTypeQ2_K:
|
||||
return "Q2_K"
|
||||
case TensorTypeQ3_K:
|
||||
return "Q3_K"
|
||||
case TensorTypeQ4_K:
|
||||
return "Q4_K"
|
||||
case TensorTypeQ5_K:
|
||||
return "Q5_K"
|
||||
case TensorTypeQ6_K:
|
||||
return "Q6_K"
|
||||
case TensorTypeQ8_K:
|
||||
return "Q8_K"
|
||||
case TensorTypeF64:
|
||||
return "F64"
|
||||
case TensorTypeBF16:
|
||||
return "BF16"
|
||||
default:
|
||||
return "unknown"
|
||||
}
|
||||
}
|
||||
19
go.mod
19
go.mod
@@ -1,6 +1,6 @@
|
||||
module github.com/ollama/ollama
|
||||
|
||||
go 1.23.4
|
||||
go 1.24.0
|
||||
|
||||
require (
|
||||
github.com/containerd/console v1.0.3
|
||||
@@ -11,7 +11,7 @@ require (
|
||||
github.com/spf13/cobra v1.7.0
|
||||
github.com/stretchr/testify v1.9.0
|
||||
github.com/x448/float16 v0.8.4
|
||||
golang.org/x/sync v0.10.0
|
||||
golang.org/x/sync v0.12.0
|
||||
)
|
||||
|
||||
require (
|
||||
@@ -24,7 +24,7 @@ require (
|
||||
github.com/nlpodyssey/gopickle v0.3.0
|
||||
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
|
||||
golang.org/x/image v0.22.0
|
||||
gonum.org/v1/gonum v0.15.0
|
||||
golang.org/x/tools v0.30.0
|
||||
)
|
||||
|
||||
require (
|
||||
@@ -44,6 +44,7 @@ require (
|
||||
github.com/xtgo/set v1.0.0 // indirect
|
||||
go4.org/unsafe/assume-no-moving-gc v0.0.0-20231121144256-b99613f794b6 // indirect
|
||||
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1 // indirect
|
||||
gonum.org/v1/gonum v0.15.0 // indirect
|
||||
gorgonia.org/vecf32 v0.9.0 // indirect
|
||||
gorgonia.org/vecf64 v0.9.0 // indirect
|
||||
)
|
||||
@@ -69,12 +70,12 @@ require (
|
||||
github.com/twitchyliquid64/golang-asm v0.15.1 // indirect
|
||||
github.com/ugorji/go/codec v1.2.12 // indirect
|
||||
golang.org/x/arch v0.8.0 // indirect
|
||||
golang.org/x/crypto v0.31.0
|
||||
golang.org/x/exp v0.0.0-20231110203233-9a3e6036ecaa
|
||||
golang.org/x/net v0.25.0 // indirect
|
||||
golang.org/x/sys v0.28.0
|
||||
golang.org/x/term v0.27.0
|
||||
golang.org/x/text v0.21.0
|
||||
golang.org/x/crypto v0.36.0
|
||||
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa
|
||||
golang.org/x/net v0.38.0 // indirect
|
||||
golang.org/x/sys v0.31.0
|
||||
golang.org/x/term v0.30.0
|
||||
golang.org/x/text v0.23.0
|
||||
google.golang.org/protobuf v1.34.1
|
||||
gopkg.in/yaml.v3 v3.0.1 // indirect
|
||||
)
|
||||
|
||||
30
go.sum
30
go.sum
@@ -214,16 +214,16 @@ golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACk
|
||||
golang.org/x/crypto v0.0.0-20190510104115-cbcb75029529/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
|
||||
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
|
||||
golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
|
||||
golang.org/x/crypto v0.31.0 h1:ihbySMvVjLAeSH1IbfcRTkD/iNscyz8rGzjF/E5hV6U=
|
||||
golang.org/x/crypto v0.31.0/go.mod h1:kDsLvtWBEx7MV9tJOj9bnXsPbxwJQ6csT/x4KIN4Ssk=
|
||||
golang.org/x/crypto v0.36.0 h1:AnAEvhDddvBdpY+uR+MyHmuZzzNqXSe/GvuDeob5L34=
|
||||
golang.org/x/crypto v0.36.0/go.mod h1:Y4J0ReaxCR1IMaabaSMugxJES1EpwhBHhv2bDHklZvc=
|
||||
golang.org/x/exp v0.0.0-20180321215751-8460e604b9de/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20180807140117-3d87b88a115f/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20190125153040-c74c464bbbf2/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20190306152737-a1d7652674e8/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20191002040644-a1355ae1e2c3/go.mod h1:NOZ3BPKG0ec/BKJQgnvsSFpcKLM5xXVWnvZS97DWHgE=
|
||||
golang.org/x/exp v0.0.0-20231110203233-9a3e6036ecaa h1:FRnLl4eNAQl8hwxVVC17teOw8kdjVDVAiFMtgUdTSRQ=
|
||||
golang.org/x/exp v0.0.0-20231110203233-9a3e6036ecaa/go.mod h1:zk2irFbV9DP96SEBUUAy67IdHUaZuSnrz1n472HUCLE=
|
||||
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa h1:t2QcU6V556bFjYgu4L6C+6VrCPyJZ+eyRsABUPs1mz4=
|
||||
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa/go.mod h1:BHOTPb3L19zxehTsLoJXVaTktb06DFgmdW6Wb9s8jqk=
|
||||
golang.org/x/image v0.0.0-20180708004352-c73c2afc3b81/go.mod h1:ux5Hcp/YLpHSI86hEcLt0YII63i6oz57MZXIpbrjZUs=
|
||||
golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js=
|
||||
golang.org/x/image v0.0.0-20190802002840-cff245a6509b/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
||||
@@ -257,8 +257,8 @@ golang.org/x/net v0.0.0-20200822124328-c89045814202/go.mod h1:/O7V0waA8r7cgGh81R
|
||||
golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU=
|
||||
golang.org/x/net v0.0.0-20210405180319-a5a99cb37ef4/go.mod h1:p54w0d4576C0XHj96bSt6lcn1PtDYWL6XObtHCRCNQM=
|
||||
golang.org/x/net v0.0.0-20210614182718-04defd469f4e/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
|
||||
golang.org/x/net v0.25.0 h1:d/OCCoBEUq33pjydKrGQhw7IlUPI2Oylr+8qLx49kac=
|
||||
golang.org/x/net v0.25.0/go.mod h1:JkAGAh7GEvH74S6FOH42FLoXpXbE/aqXSrIQjXgsiwM=
|
||||
golang.org/x/net v0.38.0 h1:vRMAPTMaeGqVhG5QyLJHqNDwecKTomGeqbnfZyKlBI8=
|
||||
golang.org/x/net v0.38.0/go.mod h1:ivrbrMbzFq5J41QOQh0siUuly180yBYtLp+CKbEaFx8=
|
||||
golang.org/x/oauth2 v0.0.0-20180821212333-d2e6202438be/go.mod h1:N/0e6XlmueqKjAGxoOufVs8QHGRruUQn6yWY3a++T0U=
|
||||
golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw=
|
||||
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
@@ -268,8 +268,8 @@ golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJ
|
||||
golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sync v0.0.0-20210220032951-036812b2e83c/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sync v0.10.0 h1:3NQrjDixjgGwUOCaF8w2+VYHv0Ve/vGYSbdkTa98gmQ=
|
||||
golang.org/x/sync v0.10.0/go.mod h1:Czt+wKu1gCyEFDUtn0jG5QVvpJ6rzVqr5aXyt9drQfk=
|
||||
golang.org/x/sync v0.12.0 h1:MHc5BpPuC30uJk597Ri8TV3CNZcTLu6B6z4lJy+g6Jw=
|
||||
golang.org/x/sync v0.12.0/go.mod h1:1dzgHSNfp02xaA81J2MS99Qcpr2w7fw1gpm99rleRqA=
|
||||
golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
|
||||
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
|
||||
golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
||||
@@ -285,17 +285,17 @@ golang.org/x/sys v0.0.0-20210510120138-977fb7262007/go.mod h1:oPkhp1MJrh7nUepCBc
|
||||
golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.5.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.28.0 h1:Fksou7UEQUWlKvIdsqzJmUmCX3cZuD2+P3XyyzwMhlA=
|
||||
golang.org/x/sys v0.28.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
|
||||
golang.org/x/sys v0.31.0 h1:ioabZlmFYtWhL+TRYpcnNlLwhyxaM9kWTDEmfnprqik=
|
||||
golang.org/x/sys v0.31.0/go.mod h1:BJP2sWEmIv4KK5OTEluFJCKSidICx8ciO85XgH3Ak8k=
|
||||
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
|
||||
golang.org/x/term v0.27.0 h1:WP60Sv1nlK1T6SupCHbXzSaN0b9wUmsPoRS9b61A23Q=
|
||||
golang.org/x/term v0.27.0/go.mod h1:iMsnZpn0cago0GOrHO2+Y7u7JPn5AylBrcoWkElMTSM=
|
||||
golang.org/x/term v0.30.0 h1:PQ39fJZ+mfadBm0y5WlL4vlM7Sx1Hgf13sMIY2+QS9Y=
|
||||
golang.org/x/term v0.30.0/go.mod h1:NYYFdzHoI5wRh/h5tDMdMqCqPJZEuNqVR5xJLd/n67g=
|
||||
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
|
||||
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
||||
golang.org/x/text v0.3.5/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
||||
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
||||
golang.org/x/text v0.21.0 h1:zyQAAkrwaneQ066sspRyJaG9VNi/YJ1NfzcGB3hZ/qo=
|
||||
golang.org/x/text v0.21.0/go.mod h1:4IBbMaMmOPCJ8SecivzSH54+73PCFmPWxNTLm+vZkEQ=
|
||||
golang.org/x/text v0.23.0 h1:D71I7dUrlY+VX0gQShAThNGHFxZ13dGLBHQLVl1mJlY=
|
||||
golang.org/x/text v0.23.0/go.mod h1:/BLNzu4aZCJ1+kcD0DNRotWKage4q2rGVAg4o22unh4=
|
||||
golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
||||
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
||||
golang.org/x/tools v0.0.0-20190114222345-bf090417da8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
||||
@@ -309,6 +309,8 @@ golang.org/x/tools v0.0.0-20200130002326-2f3ba24bd6e7/go.mod h1:TB2adYChydJhpapK
|
||||
golang.org/x/tools v0.0.0-20200619180055-7c47624df98f/go.mod h1:EkVYQZoAsY45+roYkvgYkIh4xh/qjgUK9TdY2XT94GE=
|
||||
golang.org/x/tools v0.0.0-20210106214847-113979e3529a/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA=
|
||||
golang.org/x/tools v0.1.4/go.mod h1:o0xws9oXOQQZyjljx8fwUC0k7L1pTE6eaCbjGeHmOkk=
|
||||
golang.org/x/tools v0.30.0 h1:BgcpHewrV5AUp2G9MebG4XPFI1E2W41zU1SaqVA9vJY=
|
||||
golang.org/x/tools v0.30.0/go.mod h1:c347cR/OJfw5TI+GfX7RUPNMdDRRbjvYTS0jPyvsVtY=
|
||||
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
||||
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
||||
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
||||
|
||||
412
integration/api_test.go
Normal file
412
integration/api_test.go
Normal file
@@ -0,0 +1,412 @@
|
||||
//go:build integration
|
||||
|
||||
package integration
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"fmt"
|
||||
"math/rand"
|
||||
"strings"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
func TestAPIGenerate(t *testing.T) {
|
||||
initialTimeout := 60 * time.Second
|
||||
streamTimeout := 30 * time.Second
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 1*time.Minute)
|
||||
defer cancel()
|
||||
// Set up the test data
|
||||
req := api.GenerateRequest{
|
||||
Model: smol,
|
||||
Prompt: "why is the sky blue? be brief",
|
||||
Options: map[string]interface{}{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
},
|
||||
}
|
||||
anyResp := []string{"rayleigh", "scattering"}
|
||||
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
if err := PullIfMissing(ctx, client, req.Model); err != nil {
|
||||
t.Fatalf("pull failed %s", err)
|
||||
}
|
||||
|
||||
tests := []struct {
|
||||
name string
|
||||
stream bool
|
||||
}{
|
||||
{
|
||||
name: "stream",
|
||||
stream: true,
|
||||
},
|
||||
{
|
||||
name: "no_stream",
|
||||
stream: false,
|
||||
},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
stallTimer := time.NewTimer(initialTimeout)
|
||||
var buf bytes.Buffer
|
||||
fn := func(response api.GenerateResponse) error {
|
||||
// Fields that must always be present
|
||||
if response.Model == "" {
|
||||
t.Errorf("response missing model: %#v", response)
|
||||
}
|
||||
if response.Done {
|
||||
// Required fields for final updates:
|
||||
if response.DoneReason == "" && *req.Stream {
|
||||
// TODO - is the lack of done reason on non-stream a bug?
|
||||
t.Errorf("final response missing done_reason: %#v", response)
|
||||
}
|
||||
if response.Metrics.TotalDuration == 0 {
|
||||
t.Errorf("final response missing total_duration: %#v", response)
|
||||
}
|
||||
if response.Metrics.LoadDuration == 0 {
|
||||
t.Errorf("final response missing load_duration: %#v", response)
|
||||
}
|
||||
if response.Metrics.PromptEvalDuration == 0 {
|
||||
t.Errorf("final response missing prompt_eval_duration: %#v", response)
|
||||
}
|
||||
if response.Metrics.EvalCount == 0 {
|
||||
t.Errorf("final response missing eval_count: %#v", response)
|
||||
}
|
||||
if response.Metrics.EvalDuration == 0 {
|
||||
t.Errorf("final response missing eval_duration: %#v", response)
|
||||
}
|
||||
if len(response.Context) == 0 {
|
||||
t.Errorf("final response missing context: %#v", response)
|
||||
}
|
||||
|
||||
// Note: caching can result in no prompt eval count, so this can't be verified reliably
|
||||
// if response.Metrics.PromptEvalCount == 0 {
|
||||
// t.Errorf("final response missing prompt_eval_count: %#v", response)
|
||||
// }
|
||||
|
||||
} // else incremental response, nothing to check right now...
|
||||
buf.Write([]byte(response.Response))
|
||||
if !stallTimer.Reset(streamTimeout) {
|
||||
return fmt.Errorf("stall was detected while streaming response, aborting")
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
done := make(chan int)
|
||||
var genErr error
|
||||
go func() {
|
||||
req.Stream = &test.stream
|
||||
req.Options["seed"] = rand.Int() // bust cache for prompt eval results
|
||||
genErr = client.Generate(ctx, &req, fn)
|
||||
done <- 0
|
||||
}()
|
||||
|
||||
select {
|
||||
case <-stallTimer.C:
|
||||
if buf.Len() == 0 {
|
||||
t.Errorf("generate never started. Timed out after :%s", initialTimeout.String())
|
||||
} else {
|
||||
t.Errorf("generate stalled. Response so far:%s", buf.String())
|
||||
}
|
||||
case <-done:
|
||||
if genErr != nil {
|
||||
t.Fatalf("failed with %s request prompt %s ", req.Model, req.Prompt)
|
||||
}
|
||||
// Verify the response contains the expected data
|
||||
response := buf.String()
|
||||
atLeastOne := false
|
||||
for _, resp := range anyResp {
|
||||
if strings.Contains(strings.ToLower(response), resp) {
|
||||
atLeastOne = true
|
||||
break
|
||||
}
|
||||
}
|
||||
if !atLeastOne {
|
||||
t.Errorf("none of %v found in %s", anyResp, response)
|
||||
}
|
||||
case <-ctx.Done():
|
||||
t.Error("outer test context done while waiting for generate")
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
// Validate PS while we're at it...
|
||||
resp, err := client.ListRunning(ctx)
|
||||
if err != nil {
|
||||
t.Fatalf("list models API error: %s", err)
|
||||
}
|
||||
if resp == nil || len(resp.Models) == 0 {
|
||||
t.Fatalf("list models API returned empty list while model should still be loaded")
|
||||
}
|
||||
// Find the model we just loaded and verify some attributes
|
||||
found := false
|
||||
for _, model := range resp.Models {
|
||||
if strings.Contains(model.Name, req.Model) {
|
||||
found = true
|
||||
if model.Model == "" {
|
||||
t.Errorf("model field omitted: %#v", model)
|
||||
}
|
||||
if model.Size == 0 {
|
||||
t.Errorf("size omitted: %#v", model)
|
||||
}
|
||||
if model.Digest == "" {
|
||||
t.Errorf("digest omitted: %#v", model)
|
||||
}
|
||||
verifyModelDetails(t, model.Details)
|
||||
var nilTime time.Time
|
||||
if model.ExpiresAt == nilTime {
|
||||
t.Errorf("expires_at omitted: %#v", model)
|
||||
}
|
||||
// SizeVRAM could be zero.
|
||||
}
|
||||
}
|
||||
if !found {
|
||||
t.Errorf("unable to locate running model: %#v", resp)
|
||||
}
|
||||
}
|
||||
|
||||
func TestAPIChat(t *testing.T) {
|
||||
initialTimeout := 60 * time.Second
|
||||
streamTimeout := 30 * time.Second
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 1*time.Minute)
|
||||
defer cancel()
|
||||
// Set up the test data
|
||||
req := api.ChatRequest{
|
||||
Model: smol,
|
||||
Messages: []api.Message{
|
||||
{
|
||||
Role: "user",
|
||||
Content: "why is the sky blue? be brief",
|
||||
},
|
||||
},
|
||||
Options: map[string]interface{}{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
},
|
||||
}
|
||||
anyResp := []string{"rayleigh", "scattering"}
|
||||
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
if err := PullIfMissing(ctx, client, req.Model); err != nil {
|
||||
t.Fatalf("pull failed %s", err)
|
||||
}
|
||||
|
||||
tests := []struct {
|
||||
name string
|
||||
stream bool
|
||||
}{
|
||||
{
|
||||
name: "stream",
|
||||
stream: true,
|
||||
},
|
||||
{
|
||||
name: "no_stream",
|
||||
stream: false,
|
||||
},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
stallTimer := time.NewTimer(initialTimeout)
|
||||
var buf bytes.Buffer
|
||||
fn := func(response api.ChatResponse) error {
|
||||
// Fields that must always be present
|
||||
if response.Model == "" {
|
||||
t.Errorf("response missing model: %#v", response)
|
||||
}
|
||||
if response.Done {
|
||||
// Required fields for final updates:
|
||||
var nilTime time.Time
|
||||
if response.CreatedAt == nilTime {
|
||||
t.Errorf("final response missing total_duration: %#v", response)
|
||||
}
|
||||
if response.DoneReason == "" {
|
||||
t.Errorf("final response missing done_reason: %#v", response)
|
||||
}
|
||||
if response.Metrics.TotalDuration == 0 {
|
||||
t.Errorf("final response missing total_duration: %#v", response)
|
||||
}
|
||||
if response.Metrics.LoadDuration == 0 {
|
||||
t.Errorf("final response missing load_duration: %#v", response)
|
||||
}
|
||||
if response.Metrics.PromptEvalDuration == 0 {
|
||||
t.Errorf("final response missing prompt_eval_duration: %#v", response)
|
||||
}
|
||||
if response.Metrics.EvalCount == 0 {
|
||||
t.Errorf("final response missing eval_count: %#v", response)
|
||||
}
|
||||
if response.Metrics.EvalDuration == 0 {
|
||||
t.Errorf("final response missing eval_duration: %#v", response)
|
||||
}
|
||||
|
||||
if response.Metrics.PromptEvalCount == 0 {
|
||||
t.Errorf("final response missing prompt_eval_count: %#v", response)
|
||||
}
|
||||
} // else incremental response, nothing to check right now...
|
||||
buf.Write([]byte(response.Message.Content))
|
||||
if !stallTimer.Reset(streamTimeout) {
|
||||
return fmt.Errorf("stall was detected while streaming response, aborting")
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
done := make(chan int)
|
||||
var genErr error
|
||||
go func() {
|
||||
req.Stream = &test.stream
|
||||
req.Options["seed"] = rand.Int() // bust cache for prompt eval results
|
||||
genErr = client.Chat(ctx, &req, fn)
|
||||
done <- 0
|
||||
}()
|
||||
|
||||
select {
|
||||
case <-stallTimer.C:
|
||||
if buf.Len() == 0 {
|
||||
t.Errorf("chat never started. Timed out after :%s", initialTimeout.String())
|
||||
} else {
|
||||
t.Errorf("chat stalled. Response so far:%s", buf.String())
|
||||
}
|
||||
case <-done:
|
||||
if genErr != nil {
|
||||
t.Fatalf("failed with %s request prompt %v", req.Model, req.Messages)
|
||||
}
|
||||
// Verify the response contains the expected data
|
||||
response := buf.String()
|
||||
atLeastOne := false
|
||||
for _, resp := range anyResp {
|
||||
if strings.Contains(strings.ToLower(response), resp) {
|
||||
atLeastOne = true
|
||||
break
|
||||
}
|
||||
}
|
||||
if !atLeastOne {
|
||||
t.Errorf("none of %v found in %s", anyResp, response)
|
||||
}
|
||||
case <-ctx.Done():
|
||||
t.Error("outer test context done while waiting for chat")
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestAPIListModels(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 10*time.Second)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
// Make sure we have at least one model so an empty list can be considered a failure
|
||||
if err := PullIfMissing(ctx, client, smol); err != nil {
|
||||
t.Fatalf("pull failed %s", err)
|
||||
}
|
||||
|
||||
resp, err := client.List(ctx)
|
||||
if err != nil {
|
||||
t.Fatalf("unable to list models: %s", err)
|
||||
}
|
||||
if len(resp.Models) == 0 {
|
||||
t.Fatalf("list should not be empty")
|
||||
}
|
||||
model := resp.Models[0]
|
||||
if model.Name == "" {
|
||||
t.Errorf("first model name empty: %#v", model)
|
||||
}
|
||||
var nilTime time.Time
|
||||
if model.ModifiedAt == nilTime {
|
||||
t.Errorf("first model modified_at empty: %#v", model)
|
||||
}
|
||||
if model.Size == 0 {
|
||||
t.Errorf("first model size empty: %#v", model)
|
||||
}
|
||||
if model.Digest == "" {
|
||||
t.Errorf("first model digest empty: %#v", model)
|
||||
}
|
||||
verifyModelDetails(t, model.Details)
|
||||
}
|
||||
|
||||
func verifyModelDetails(t *testing.T, details api.ModelDetails) {
|
||||
if details.Format == "" {
|
||||
t.Errorf("first model details.format empty: %#v", details)
|
||||
}
|
||||
if details.Family == "" {
|
||||
t.Errorf("first model details.family empty: %#v", details)
|
||||
}
|
||||
if details.ParameterSize == "" {
|
||||
t.Errorf("first model details.parameter_size empty: %#v", details)
|
||||
}
|
||||
if details.QuantizationLevel == "" {
|
||||
t.Errorf("first model details.quantization_level empty: %#v", details)
|
||||
}
|
||||
}
|
||||
|
||||
func TestAPIShowModel(t *testing.T) {
|
||||
modelName := "llama3.2"
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 1*time.Minute)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
if err := PullIfMissing(ctx, client, modelName); err != nil {
|
||||
t.Fatalf("pull failed %s", err)
|
||||
}
|
||||
resp, err := client.Show(ctx, &api.ShowRequest{Name: modelName})
|
||||
if err != nil {
|
||||
t.Fatalf("unable to show model: %s", err)
|
||||
}
|
||||
if resp.License == "" {
|
||||
t.Errorf("%s missing license: %#v", modelName, resp)
|
||||
}
|
||||
if resp.Modelfile == "" {
|
||||
t.Errorf("%s missing modelfile: %#v", modelName, resp)
|
||||
}
|
||||
if resp.Parameters == "" {
|
||||
t.Errorf("%s missing parameters: %#v", modelName, resp)
|
||||
}
|
||||
if resp.Template == "" {
|
||||
t.Errorf("%s missing template: %#v", modelName, resp)
|
||||
}
|
||||
// llama3 omits system
|
||||
verifyModelDetails(t, resp.Details)
|
||||
// llama3 ommits messages
|
||||
if len(resp.ModelInfo) == 0 {
|
||||
t.Errorf("%s missing model_info: %#v", modelName, resp)
|
||||
}
|
||||
// llama3 omits projectors
|
||||
var nilTime time.Time
|
||||
if resp.ModifiedAt == nilTime {
|
||||
t.Errorf("%s missing modified_at: %#v", modelName, resp)
|
||||
}
|
||||
}
|
||||
|
||||
func TestAPIEmbeddings(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 1*time.Minute)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
req := api.EmbeddingRequest{
|
||||
Model: "orca-mini",
|
||||
Prompt: "why is the sky blue?",
|
||||
Options: map[string]interface{}{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
},
|
||||
}
|
||||
|
||||
if err := PullIfMissing(ctx, client, req.Model); err != nil {
|
||||
t.Fatalf("pull failed %s", err)
|
||||
}
|
||||
|
||||
resp, err := client.Embeddings(ctx, &req)
|
||||
if err != nil {
|
||||
t.Fatalf("embeddings call failed %s", err)
|
||||
}
|
||||
if len(resp.Embedding) == 0 {
|
||||
t.Errorf("zero length embedding response")
|
||||
}
|
||||
}
|
||||
@@ -14,15 +14,15 @@ import (
|
||||
"github.com/stretchr/testify/require"
|
||||
)
|
||||
|
||||
func TestOrcaMiniBlueSky(t *testing.T) {
|
||||
func TestBlueSky(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
// Set up the test data
|
||||
req := api.GenerateRequest{
|
||||
Model: "orca-mini",
|
||||
Model: smol,
|
||||
Prompt: "why is the sky blue?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
},
|
||||
@@ -31,6 +31,7 @@ func TestOrcaMiniBlueSky(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestUnicode(t *testing.T) {
|
||||
skipUnderMinVRAM(t, 6)
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
|
||||
defer cancel()
|
||||
// Set up the test data
|
||||
@@ -39,7 +40,7 @@ func TestUnicode(t *testing.T) {
|
||||
Model: "deepseek-coder-v2:16b-lite-instruct-q2_K",
|
||||
Prompt: "天空为什么是蓝色的?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
// Workaround deepseek context shifting bug
|
||||
@@ -61,7 +62,7 @@ func TestExtendedUnicodeOutput(t *testing.T) {
|
||||
Model: "gemma2:2b",
|
||||
Prompt: "Output some smily face emoji",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
},
|
||||
@@ -93,10 +94,10 @@ func TestUnicodeModelDir(t *testing.T) {
|
||||
defer cancel()
|
||||
|
||||
req := api.GenerateRequest{
|
||||
Model: "orca-mini",
|
||||
Model: smol,
|
||||
Prompt: "why is the sky blue?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
},
|
||||
|
||||
@@ -21,11 +21,11 @@ func TestMultiModelConcurrency(t *testing.T) {
|
||||
var (
|
||||
req = [2]api.GenerateRequest{
|
||||
{
|
||||
Model: "orca-mini",
|
||||
Model: "llama3.2:1b",
|
||||
Prompt: "why is the ocean blue?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -34,7 +34,7 @@ func TestMultiModelConcurrency(t *testing.T) {
|
||||
Prompt: "what is the origin of the us thanksgiving holiday?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -67,7 +67,7 @@ func TestMultiModelConcurrency(t *testing.T) {
|
||||
wg.Wait()
|
||||
}
|
||||
|
||||
func TestIntegrationConcurrentPredictOrcaMini(t *testing.T) {
|
||||
func TestIntegrationConcurrentPredict(t *testing.T) {
|
||||
req, resp := GenerateRequests()
|
||||
reqLimit := len(req)
|
||||
iterLimit := 5
|
||||
@@ -117,6 +117,9 @@ func TestMultiModelStress(t *testing.T) {
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
if maxVram < 2*format.GibiByte {
|
||||
t.Skip("VRAM less than 2G, skipping model stress tests")
|
||||
}
|
||||
|
||||
type model struct {
|
||||
name string
|
||||
@@ -125,8 +128,8 @@ func TestMultiModelStress(t *testing.T) {
|
||||
|
||||
smallModels := []model{
|
||||
{
|
||||
name: "orca-mini",
|
||||
size: 2992 * format.MebiByte,
|
||||
name: "llama3.2:1b",
|
||||
size: 2876 * format.MebiByte,
|
||||
},
|
||||
{
|
||||
name: "phi",
|
||||
|
||||
@@ -23,7 +23,7 @@ func TestLongInputContext(t *testing.T) {
|
||||
Model: "llama2",
|
||||
Prompt: "Oh, don’t speak to me of Austria. Perhaps I don’t understand things, but Austria never has wished, and does not wish, for war. She is betraying us! Russia alone must save Europe. Our gracious sovereign recognizes his high vocation and will be true to it. That is the one thing I have faith in! Our good and wonderful sovereign has to perform the noblest role on earth, and he is so virtuous and noble that God will not forsake him. He will fulfill his vocation and crush the hydra of revolution, which has become more terrible than ever in the person of this murderer and villain! We alone must avenge the blood of the just one.... Whom, I ask you, can we rely on?... England with her commercial spirit will not and cannot understand the Emperor Alexander’s loftiness of soul. She has refused to evacuate Malta. She wanted to find, and still seeks, some secret motive in our actions. What answer did Novosíltsev get? None. The English have not understood and cannot understand the self-abnegation of our Emperor who wants nothing for himself, but only desires the good of mankind. And what have they promised? Nothing! And what little they have promised they will not perform! Prussia has always declared that Buonaparte is invincible, and that all Europe is powerless before him.... And I don’t believe a word that Hardenburg says, or Haugwitz either. This famous Prussian neutrality is just a trap. I have faith only in God and the lofty destiny of our adored monarch. He will save Europe! What country is this referring to?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
"num_ctx": 128,
|
||||
@@ -50,7 +50,7 @@ func TestContextExhaustion(t *testing.T) {
|
||||
Model: "llama2",
|
||||
Prompt: "Write me a story with a ton of emojis?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
"num_ctx": 128,
|
||||
|
||||
@@ -34,13 +34,15 @@ func cosineSimilarity[V float32 | float64](v1, v2 []V) V {
|
||||
func TestAllMiniLMEmbeddings(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
req := api.EmbeddingRequest{
|
||||
Model: "all-minilm",
|
||||
Prompt: "why is the sky blue?",
|
||||
}
|
||||
|
||||
res, err := embeddingTestHelper(ctx, t, req)
|
||||
res, err := embeddingTestHelper(ctx, client, t, req)
|
||||
|
||||
if err != nil {
|
||||
t.Fatalf("error: %v", err)
|
||||
@@ -62,13 +64,15 @@ func TestAllMiniLMEmbeddings(t *testing.T) {
|
||||
func TestAllMiniLMEmbed(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
req := api.EmbedRequest{
|
||||
Model: "all-minilm",
|
||||
Input: "why is the sky blue?",
|
||||
}
|
||||
|
||||
res, err := embedTestHelper(ctx, t, req)
|
||||
res, err := embedTestHelper(ctx, client, t, req)
|
||||
|
||||
if err != nil {
|
||||
t.Fatalf("error: %v", err)
|
||||
@@ -98,13 +102,15 @@ func TestAllMiniLMEmbed(t *testing.T) {
|
||||
func TestAllMiniLMBatchEmbed(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
req := api.EmbedRequest{
|
||||
Model: "all-minilm",
|
||||
Input: []string{"why is the sky blue?", "why is the grass green?"},
|
||||
}
|
||||
|
||||
res, err := embedTestHelper(ctx, t, req)
|
||||
res, err := embedTestHelper(ctx, client, t, req)
|
||||
|
||||
if err != nil {
|
||||
t.Fatalf("error: %v", err)
|
||||
@@ -144,6 +150,8 @@ func TestAllMiniLMBatchEmbed(t *testing.T) {
|
||||
func TestAllMiniLMEmbedTruncate(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
truncTrue, truncFalse := true, false
|
||||
|
||||
@@ -182,7 +190,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
|
||||
res := make(map[string]*api.EmbedResponse)
|
||||
|
||||
for _, req := range reqs {
|
||||
response, err := embedTestHelper(ctx, t, req.Request)
|
||||
response, err := embedTestHelper(ctx, client, t, req.Request)
|
||||
if err != nil {
|
||||
t.Fatalf("error: %v", err)
|
||||
}
|
||||
@@ -198,7 +206,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
|
||||
}
|
||||
|
||||
// check that truncate set to false returns an error if context length is exceeded
|
||||
_, err := embedTestHelper(ctx, t, api.EmbedRequest{
|
||||
_, err := embedTestHelper(ctx, client, t, api.EmbedRequest{
|
||||
Model: "all-minilm",
|
||||
Input: "why is the sky blue?",
|
||||
Truncate: &truncFalse,
|
||||
@@ -210,9 +218,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func embeddingTestHelper(ctx context.Context, t *testing.T, req api.EmbeddingRequest) (*api.EmbeddingResponse, error) {
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
func embeddingTestHelper(ctx context.Context, client *api.Client, t *testing.T, req api.EmbeddingRequest) (*api.EmbeddingResponse, error) {
|
||||
if err := PullIfMissing(ctx, client, req.Model); err != nil {
|
||||
t.Fatalf("failed to pull model %s: %v", req.Model, err)
|
||||
}
|
||||
@@ -226,9 +232,7 @@ func embeddingTestHelper(ctx context.Context, t *testing.T, req api.EmbeddingReq
|
||||
return response, nil
|
||||
}
|
||||
|
||||
func embedTestHelper(ctx context.Context, t *testing.T, req api.EmbedRequest) (*api.EmbedResponse, error) {
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
func embedTestHelper(ctx context.Context, client *api.Client, t *testing.T, req api.EmbedRequest) (*api.EmbedResponse, error) {
|
||||
if err := PullIfMissing(ctx, client, req.Model); err != nil {
|
||||
t.Fatalf("failed to pull model %s: %v", req.Model, err)
|
||||
}
|
||||
|
||||
@@ -12,14 +12,64 @@ import (
|
||||
"github.com/stretchr/testify/require"
|
||||
)
|
||||
|
||||
func TestIntegrationLlava(t *testing.T) {
|
||||
func TestVisionModels(t *testing.T) {
|
||||
skipUnderMinVRAM(t, 6)
|
||||
type testCase struct {
|
||||
model string
|
||||
}
|
||||
testCases := []testCase{
|
||||
{
|
||||
model: "qwen2.5vl",
|
||||
},
|
||||
{
|
||||
model: "llama3.2-vision",
|
||||
},
|
||||
{
|
||||
model: "gemma3",
|
||||
},
|
||||
}
|
||||
|
||||
for _, v := range testCases {
|
||||
t.Run(v.model, func(t *testing.T) {
|
||||
image, err := base64.StdEncoding.DecodeString(imageEncoding)
|
||||
require.NoError(t, err)
|
||||
req := api.GenerateRequest{
|
||||
Model: v.model,
|
||||
Prompt: "what does the text in this image say?",
|
||||
Stream: &stream,
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
Images: []api.ImageData{
|
||||
image,
|
||||
},
|
||||
}
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Minute)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
|
||||
// Note: sometimes it returns "the ollamas" sometimes "the ollams"
|
||||
resp := "the ollam"
|
||||
defer cleanup()
|
||||
require.NoError(t, PullIfMissing(ctx, client, req.Model))
|
||||
// llava models on CPU can be quite slow to start
|
||||
DoGenerate(ctx, t, client, req, []string{resp}, 240*time.Second, 30*time.Second)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestIntegrationSplitBatch(t *testing.T) {
|
||||
skipUnderMinVRAM(t, 6)
|
||||
image, err := base64.StdEncoding.DecodeString(imageEncoding)
|
||||
require.NoError(t, err)
|
||||
req := api.GenerateRequest{
|
||||
Model: "llava:7b",
|
||||
Model: "gemma3:4b",
|
||||
// Fill up a chunk of the batch so the image will partially spill over into the next one
|
||||
System: "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed aliquet, justo in malesuada lobortis, odio ligula volutpat quam, quis faucibus ipsum magna quis sapien. Aliquam in venenatis diam, eu viverra magna. Phasellus imperdiet hendrerit volutpat. Vivamus sem ex, facilisis placerat felis non, dictum elementum est. Phasellus aliquam imperdiet lacus, eget placerat ligula sodales vel. Pellentesque nec auctor mi. Curabitur arcu nisi, faucibus eget nunc id, viverra interdum mi. Curabitur ornare ipsum ex, ac euismod ex aliquam in. Vestibulum id magna at purus accumsan fermentum. Proin scelerisque posuere nunc quis interdum. Maecenas sed mollis nisl. Etiam vitae ipsum interdum, placerat est quis, tincidunt velit. Nullam tempor nibh non lorem volutpat efficitur. Cras laoreet diam imperdiet ipsum auctor bibendum. Suspendisse ultrices urna sed metus sagittis suscipit. Quisque ullamcorper aliquam nibh ut mollis. Aenean dapibus mauris pharetra, venenatis elit ac, hendrerit odio. Cras vestibulum erat tempor, lobortis justo eu, lobortis ipsum. Nam laoreet dapibus sem. Proin vel diam ultrices, elementum ante et, ornare lectus. Proin eu accumsan nisl. Praesent ac ex vitae ipsum vulputate tristique facilisis sit amet lacus. Nullam faucibus magna a pellentesque pretium. Nunc lacinia ullamcorper sollicitudin. Donec vitae accumsan turpis, sed porttitor est. Donec porttitor mi vitae augue faucibus, vel mollis diam tincidunt.",
|
||||
Prompt: "what does the text in this image say?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -39,33 +89,6 @@ func TestIntegrationLlava(t *testing.T) {
|
||||
DoGenerate(ctx, t, client, req, []string{resp}, 120*time.Second, 30*time.Second)
|
||||
}
|
||||
|
||||
func TestIntegrationMllama(t *testing.T) {
|
||||
image, err := base64.StdEncoding.DecodeString(imageEncoding)
|
||||
require.NoError(t, err)
|
||||
req := api.GenerateRequest{
|
||||
// TODO fix up once we publish the final image
|
||||
Model: "x/llama3.2-vision",
|
||||
Prompt: "what does the text in this image say?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
Images: []api.ImageData{
|
||||
image,
|
||||
},
|
||||
}
|
||||
|
||||
resp := "the ollamas"
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Minute)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
require.NoError(t, PullIfMissing(ctx, client, req.Model))
|
||||
// mllama models on CPU can be quite slow to start,
|
||||
DoGenerate(ctx, t, client, req, []string{resp}, 240*time.Second, 30*time.Second)
|
||||
}
|
||||
|
||||
const imageEncoding = `iVBORw0KGgoAAAANSUhEUgAAANIAAAB4CAYAAACHHqzKAAAAAXNSR0IArs4c6QAAAIRlWElmTU0AKgAAAAgABQESAAMAAAABAAEAAAEaAAUAAAABAAAASgEb
|
||||
AAUAAAABAAAAUgEoAAMAAAABAAIAAIdpAAQAAAABAAAAWgAAAAAAAABIAAAAAQAAAEgAAAABAAOgAQADAAAAAQABAACgAgAEAAAAAQAAANKgAwAEAAAAAQAA
|
||||
AHgAAAAAXdsepgAAAAlwSFlzAAALEwAACxMBAJqcGAAAAVlpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6
|
||||
|
||||
@@ -17,30 +17,30 @@ var (
|
||||
stream = false
|
||||
req = [2]api.GenerateRequest{
|
||||
{
|
||||
Model: "orca-mini",
|
||||
Model: smol,
|
||||
Prompt: "why is the ocean blue?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
}, {
|
||||
Model: "orca-mini",
|
||||
Model: smol,
|
||||
Prompt: "what is the origin of the us thanksgiving holiday?",
|
||||
Stream: &stream,
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
},
|
||||
}
|
||||
resp = [2][]string{
|
||||
{"sunlight"},
|
||||
{"sunlight", "scattering", "interact"},
|
||||
{"england", "english", "massachusetts", "pilgrims"},
|
||||
}
|
||||
)
|
||||
|
||||
func TestIntegrationSimpleOrcaMini(t *testing.T) {
|
||||
func TestIntegrationSimple(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), time.Second*120)
|
||||
defer cancel()
|
||||
GenerateTestHelper(ctx, t, req[0], resp[0])
|
||||
|
||||
@@ -30,9 +30,9 @@ func TestMaxQueue(t *testing.T) {
|
||||
t.Setenv("OLLAMA_MAX_QUEUE", strconv.Itoa(threadCount))
|
||||
|
||||
req := api.GenerateRequest{
|
||||
Model: "orca-mini",
|
||||
Model: smol,
|
||||
Prompt: "write a long historical fiction story about christopher columbus. use at least 10 facts from his actual journey",
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -52,8 +52,8 @@ func TestMaxQueue(t *testing.T) {
|
||||
embedCtx := ctx
|
||||
|
||||
var genwg sync.WaitGroup
|
||||
genwg.Add(1)
|
||||
go func() {
|
||||
genwg.Add(1)
|
||||
defer genwg.Done()
|
||||
slog.Info("Starting generate request")
|
||||
DoGenerate(ctx, t, client, req, resp, 45*time.Second, 5*time.Second)
|
||||
@@ -61,7 +61,7 @@ func TestMaxQueue(t *testing.T) {
|
||||
}()
|
||||
|
||||
// Give the generate a chance to get started before we start hammering on embed requests
|
||||
time.Sleep(5 * time.Millisecond)
|
||||
time.Sleep(10 * time.Millisecond)
|
||||
|
||||
threadCount += 10 // Add a few extra to ensure we push the queue past its limit
|
||||
busyCount := 0
|
||||
@@ -71,8 +71,8 @@ func TestMaxQueue(t *testing.T) {
|
||||
counterMu := sync.Mutex{}
|
||||
var embedwg sync.WaitGroup
|
||||
for i := 0; i < threadCount; i++ {
|
||||
embedwg.Add(1)
|
||||
go func(i int) {
|
||||
embedwg.Add(1)
|
||||
defer embedwg.Done()
|
||||
slog.Info("embed started", "id", i)
|
||||
embedReq := api.EmbeddingRequest{
|
||||
|
||||
184
integration/model_arch_test.go
Normal file
184
integration/model_arch_test.go
Normal file
@@ -0,0 +1,184 @@
|
||||
//go:build integration && models
|
||||
|
||||
package integration
|
||||
|
||||
import (
|
||||
"context"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io/ioutil"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strconv"
|
||||
"strings"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/format"
|
||||
)
|
||||
|
||||
var (
|
||||
started = time.Now()
|
||||
chatModels = []string{
|
||||
"granite3-moe:latest",
|
||||
"granite-code:latest",
|
||||
"nemotron-mini:latest",
|
||||
"command-r:latest",
|
||||
"gemma2:latest",
|
||||
"gemma:latest",
|
||||
"internlm2:latest",
|
||||
"phi3.5:latest",
|
||||
"phi3:latest",
|
||||
// "phi:latest", // flaky, sometimes generates no response on first query
|
||||
"stablelm2:latest", // Predictions are off, crashes on small VRAM GPUs
|
||||
"falcon:latest",
|
||||
"falcon2:latest",
|
||||
"minicpm-v:latest",
|
||||
"mistral:latest",
|
||||
"orca-mini:latest",
|
||||
"llama2:latest",
|
||||
"llama3.1:latest",
|
||||
"llama3.2:latest",
|
||||
"llama3.2-vision:latest",
|
||||
"qwen2.5-coder:latest",
|
||||
"qwen:latest",
|
||||
"solar-pro:latest",
|
||||
}
|
||||
)
|
||||
|
||||
func TestModelsGenerate(t *testing.T) {
|
||||
softTimeout, hardTimeout := getTimeouts(t)
|
||||
slog.Info("Setting timeouts", "soft", softTimeout, "hard", hardTimeout)
|
||||
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
// TODO use info API eventually
|
||||
var maxVram uint64
|
||||
var err error
|
||||
if s := os.Getenv("OLLAMA_MAX_VRAM"); s != "" {
|
||||
maxVram, err = strconv.ParseUint(s, 10, 64)
|
||||
if err != nil {
|
||||
t.Fatalf("invalid OLLAMA_MAX_VRAM %v", err)
|
||||
}
|
||||
} else {
|
||||
slog.Warn("No VRAM info available, testing all models, so larger ones might timeout...")
|
||||
}
|
||||
|
||||
for _, model := range chatModels {
|
||||
t.Run(model, func(t *testing.T) {
|
||||
if time.Now().Sub(started) > softTimeout {
|
||||
t.Skip("skipping remaining tests to avoid excessive runtime")
|
||||
}
|
||||
if err := PullIfMissing(ctx, client, model); err != nil {
|
||||
t.Fatalf("pull failed %s", err)
|
||||
}
|
||||
if maxVram > 0 {
|
||||
resp, err := client.List(ctx)
|
||||
if err != nil {
|
||||
t.Fatalf("list models failed %v", err)
|
||||
}
|
||||
for _, m := range resp.Models {
|
||||
if m.Name == model && float32(m.Size)*1.2 > float32(maxVram) {
|
||||
t.Skipf("model %s is too large for available VRAM: %s > %s", model, format.HumanBytes(m.Size), format.HumanBytes(int64(maxVram)))
|
||||
}
|
||||
}
|
||||
}
|
||||
// TODO - fiddle with context size
|
||||
req := api.GenerateRequest{
|
||||
Model: model,
|
||||
Prompt: "why is the sky blue?",
|
||||
Options: map[string]interface{}{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
},
|
||||
}
|
||||
anyResp := []string{"rayleigh", "scattering", "atmosphere", "nitrogen", "oxygen"}
|
||||
DoGenerate(ctx, t, client, req, anyResp, 120*time.Second, 30*time.Second)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestModelsEmbed(t *testing.T) {
|
||||
softTimeout, hardTimeout := getTimeouts(t)
|
||||
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
// TODO use info API eventually
|
||||
var maxVram uint64
|
||||
var err error
|
||||
if s := os.Getenv("OLLAMA_MAX_VRAM"); s != "" {
|
||||
maxVram, err = strconv.ParseUint(s, 10, 64)
|
||||
if err != nil {
|
||||
t.Fatalf("invalid OLLAMA_MAX_VRAM %v", err)
|
||||
}
|
||||
} else {
|
||||
slog.Warn("No VRAM info available, testing all models, so larger ones might timeout...")
|
||||
}
|
||||
|
||||
data, err := ioutil.ReadFile(filepath.Join("testdata", "embed.json"))
|
||||
if err != nil {
|
||||
t.Fatalf("failed to open test data file: %s", err)
|
||||
}
|
||||
testCase := map[string][]float64{}
|
||||
err = json.Unmarshal(data, &testCase)
|
||||
if err != nil {
|
||||
t.Fatalf("failed to load test data: %s", err)
|
||||
}
|
||||
for model, expected := range testCase {
|
||||
|
||||
t.Run(model, func(t *testing.T) {
|
||||
if time.Now().Sub(started) > softTimeout {
|
||||
t.Skip("skipping remaining tests to avoid excessive runtime")
|
||||
}
|
||||
if err := PullIfMissing(ctx, client, model); err != nil {
|
||||
t.Fatalf("pull failed %s", err)
|
||||
}
|
||||
if maxVram > 0 {
|
||||
resp, err := client.List(ctx)
|
||||
if err != nil {
|
||||
t.Fatalf("list models failed %v", err)
|
||||
}
|
||||
for _, m := range resp.Models {
|
||||
if m.Name == model && float32(m.Size)*1.2 > float32(maxVram) {
|
||||
t.Skipf("model %s is too large for available VRAM: %s > %s", model, format.HumanBytes(m.Size), format.HumanBytes(int64(maxVram)))
|
||||
}
|
||||
}
|
||||
}
|
||||
req := api.EmbeddingRequest{
|
||||
Model: model,
|
||||
Prompt: "why is the sky blue?",
|
||||
Options: map[string]interface{}{
|
||||
"temperature": 0,
|
||||
"seed": 123,
|
||||
},
|
||||
}
|
||||
resp, err := client.Embeddings(ctx, &req)
|
||||
if err != nil {
|
||||
t.Fatalf("embeddings call failed %s", err)
|
||||
}
|
||||
if len(resp.Embedding) == 0 {
|
||||
t.Errorf("zero length embedding response")
|
||||
}
|
||||
if len(expected) != len(resp.Embedding) {
|
||||
expStr := make([]string, len(resp.Embedding))
|
||||
for i, v := range resp.Embedding {
|
||||
expStr[i] = fmt.Sprintf("%0.6f", v)
|
||||
}
|
||||
// When adding new models, use this output to populate the testdata/embed.json
|
||||
fmt.Printf("expected\n%s\n", strings.Join(expStr, ", "))
|
||||
t.Fatalf("expected %d, got %d", len(expected), len(resp.Embedding))
|
||||
}
|
||||
sim := cosineSimilarity(resp.Embedding, expected)
|
||||
if sim < 0.99 {
|
||||
t.Fatalf("expected %v, got %v (similarity: %f)", expected[0:5], resp.Embedding[0:5], sim)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
}
|
||||
130
integration/quantization_test.go
Normal file
130
integration/quantization_test.go
Normal file
@@ -0,0 +1,130 @@
|
||||
//go:build integration && models
|
||||
|
||||
package integration
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"strings"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
func TestQuantization(t *testing.T) {
|
||||
sourceModels := []string{
|
||||
"qwen2.5:0.5b-instruct-fp16",
|
||||
}
|
||||
quantizations := []string{
|
||||
"Q8_0",
|
||||
"Q4_K_S",
|
||||
"Q4_K_M",
|
||||
"Q4_K",
|
||||
}
|
||||
softTimeout, hardTimeout := getTimeouts(t)
|
||||
started := time.Now()
|
||||
slog.Info("Setting timeouts", "soft", softTimeout, "hard", hardTimeout)
|
||||
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
for _, base := range sourceModels {
|
||||
if err := PullIfMissing(ctx, client, base); err != nil {
|
||||
t.Fatalf("pull failed %s", err)
|
||||
}
|
||||
for _, quant := range quantizations {
|
||||
newName := fmt.Sprintf("%s__%s", base, quant)
|
||||
t.Run(newName, func(t *testing.T) {
|
||||
if time.Now().Sub(started) > softTimeout {
|
||||
t.Skip("skipping remaining tests to avoid excessive runtime")
|
||||
}
|
||||
req := &api.CreateRequest{
|
||||
Model: newName,
|
||||
Quantization: quant,
|
||||
From: base,
|
||||
}
|
||||
fn := func(resp api.ProgressResponse) error {
|
||||
// fmt.Print(".")
|
||||
return nil
|
||||
}
|
||||
t.Logf("quantizing: %s -> %s", base, quant)
|
||||
if err := client.Create(ctx, req, fn); err != nil {
|
||||
t.Fatalf("create failed %s", err)
|
||||
}
|
||||
defer func() {
|
||||
req := &api.DeleteRequest{
|
||||
Model: newName,
|
||||
}
|
||||
t.Logf("deleting: %s -> %s", base, quant)
|
||||
if err := client.Delete(ctx, req); err != nil {
|
||||
t.Logf("failed to clean up %s: %s", req.Model, err)
|
||||
}
|
||||
}()
|
||||
// Check metadata on the model
|
||||
resp, err := client.Show(ctx, &api.ShowRequest{Name: newName})
|
||||
if err != nil {
|
||||
t.Fatalf("unable to show model: %s", err)
|
||||
}
|
||||
if !strings.Contains(resp.Details.QuantizationLevel, quant) {
|
||||
t.Fatalf("unexpected quantization for %s:\ngot: %s", newName, resp.Details.QuantizationLevel)
|
||||
}
|
||||
|
||||
stream := true
|
||||
genReq := api.GenerateRequest{
|
||||
Model: newName,
|
||||
Prompt: "why is the sky blue?",
|
||||
KeepAlive: &api.Duration{Duration: 3 * time.Second},
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
Stream: &stream,
|
||||
}
|
||||
t.Logf("verifying: %s -> %s", base, quant)
|
||||
|
||||
// Some smaller quantizations can cause models to have poor quality
|
||||
// or get stuck in repetition loops, so we stop as soon as we have any matches
|
||||
anyResp := []string{"rayleigh", "scattering", "day", "sun", "moon", "color", "nitrogen", "oxygen"}
|
||||
reqCtx, reqCancel := context.WithCancel(ctx)
|
||||
atLeastOne := false
|
||||
var buf bytes.Buffer
|
||||
genfn := func(response api.GenerateResponse) error {
|
||||
buf.Write([]byte(response.Response))
|
||||
fullResp := strings.ToLower(buf.String())
|
||||
for _, resp := range anyResp {
|
||||
if strings.Contains(fullResp, resp) {
|
||||
atLeastOne = true
|
||||
t.Log(fullResp)
|
||||
reqCancel()
|
||||
break
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
done := make(chan int)
|
||||
var genErr error
|
||||
go func() {
|
||||
genErr = client.Generate(reqCtx, &genReq, genfn)
|
||||
done <- 0
|
||||
}()
|
||||
|
||||
select {
|
||||
case <-done:
|
||||
if genErr != nil && !atLeastOne {
|
||||
t.Fatalf("failed with %s request prompt %s ", genReq.Model, genReq.Prompt)
|
||||
}
|
||||
case <-ctx.Done():
|
||||
t.Error("outer test context done while waiting for generate")
|
||||
}
|
||||
|
||||
t.Logf("passed")
|
||||
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
20
integration/testdata/embed.json
vendored
Normal file
20
integration/testdata/embed.json
vendored
Normal file
File diff suppressed because one or more lines are too long
@@ -24,9 +24,14 @@ import (
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/app/lifecycle"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/stretchr/testify/require"
|
||||
)
|
||||
|
||||
const (
|
||||
smol = "llama3.2:1b"
|
||||
)
|
||||
|
||||
func Init() {
|
||||
lifecycle.InitLogging()
|
||||
}
|
||||
@@ -140,7 +145,7 @@ func PullIfMissing(ctx context.Context, client *api.Client, modelName string) er
|
||||
|
||||
showCtx, cancel := context.WithDeadlineCause(
|
||||
ctx,
|
||||
time.Now().Add(10*time.Second),
|
||||
time.Now().Add(20*time.Second),
|
||||
fmt.Errorf("show for existing model %s took too long", modelName),
|
||||
)
|
||||
defer cancel()
|
||||
@@ -157,7 +162,7 @@ func PullIfMissing(ctx context.Context, client *api.Client, modelName string) er
|
||||
}
|
||||
slog.Info("model missing", "model", modelName)
|
||||
|
||||
stallDuration := 30 * time.Second // This includes checksum verification, which can take a while on larger models
|
||||
stallDuration := 60 * time.Second // This includes checksum verification, which can take a while on larger models, and slower systems
|
||||
stallTimer := time.NewTimer(stallDuration)
|
||||
fn := func(resp api.ProgressResponse) error {
|
||||
// fmt.Print(".")
|
||||
@@ -212,6 +217,7 @@ func InitServerConnection(ctx context.Context, t *testing.T) (*api.Client, strin
|
||||
slog.Error("failed to open server log", "logfile", lifecycle.ServerLogFile, "error", err)
|
||||
return
|
||||
}
|
||||
defer fp.Close()
|
||||
data, err := io.ReadAll(fp)
|
||||
if err != nil {
|
||||
slog.Error("failed to read server log", "logfile", lifecycle.ServerLogFile, "error", err)
|
||||
@@ -283,51 +289,51 @@ func DoGenerate(ctx context.Context, t *testing.T, client *api.Client, genReq ap
|
||||
}
|
||||
|
||||
// Generate a set of requests
|
||||
// By default each request uses orca-mini as the model
|
||||
// By default each request uses llama3.2 as the model
|
||||
func GenerateRequests() ([]api.GenerateRequest, [][]string) {
|
||||
return []api.GenerateRequest{
|
||||
{
|
||||
Model: "orca-mini",
|
||||
Model: smol,
|
||||
Prompt: "why is the ocean blue?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
}, {
|
||||
Model: "orca-mini",
|
||||
Model: smol,
|
||||
Prompt: "why is the color of dirt brown?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
}, {
|
||||
Model: "orca-mini",
|
||||
Model: smol,
|
||||
Prompt: "what is the origin of the us thanksgiving holiday?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
}, {
|
||||
Model: "orca-mini",
|
||||
Model: smol,
|
||||
Prompt: "what is the origin of independence day?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
}, {
|
||||
Model: "orca-mini",
|
||||
Model: smol,
|
||||
Prompt: "what is the composition of air?",
|
||||
Stream: &stream,
|
||||
KeepAlive: &api.Duration{Duration: 10 * time.Second},
|
||||
Options: map[string]interface{}{
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
@@ -341,3 +347,26 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
|
||||
{"nitrogen", "oxygen", "carbon", "dioxide"},
|
||||
}
|
||||
}
|
||||
|
||||
func skipUnderMinVRAM(t *testing.T, gb uint64) {
|
||||
// TODO use info API in the future
|
||||
if s := os.Getenv("OLLAMA_MAX_VRAM"); s != "" {
|
||||
maxVram, err := strconv.ParseUint(s, 10, 64)
|
||||
require.NoError(t, err)
|
||||
// Don't hammer on small VRAM cards...
|
||||
if maxVram < gb*format.GibiByte {
|
||||
t.Skip("skipping with small VRAM to avoid timeouts")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func getTimeouts(t *testing.T) (soft time.Duration, hard time.Duration) {
|
||||
deadline, hasDeadline := t.Deadline()
|
||||
if !hasDeadline {
|
||||
return 8 * time.Minute, 10 * time.Minute
|
||||
} else if deadline.Compare(time.Now().Add(2*time.Minute)) <= 0 {
|
||||
t.Skip("too little time")
|
||||
return time.Duration(0), time.Duration(0)
|
||||
}
|
||||
return -time.Since(deadline.Add(-2 * time.Minute)), -time.Since(deadline.Add(-20 * time.Second))
|
||||
}
|
||||
|
||||
77
kvcache/cache.go
Normal file
77
kvcache/cache.go
Normal file
@@ -0,0 +1,77 @@
|
||||
package kvcache
|
||||
|
||||
import (
|
||||
"errors"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
var (
|
||||
ErrKvCacheFull = errors.New("could not find a kv cache slot")
|
||||
ErrNotSupported = errors.New("model does not support operation")
|
||||
)
|
||||
|
||||
type Cache interface {
|
||||
// ** used by model implementations **
|
||||
|
||||
// SetLayer sets the active layer of the cache
|
||||
SetLayer(layer int)
|
||||
|
||||
// Get returns the history of key and value tensors plus a mask
|
||||
//
|
||||
// The shape of the tensors is documented in the specific
|
||||
// cache implementation used.
|
||||
Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor)
|
||||
|
||||
// Put stores a batch of key and value in the cache
|
||||
//
|
||||
// The shape of the tensors is documented in the specific
|
||||
// cache implementation used.
|
||||
Put(ctx ml.Context, key, value ml.Tensor)
|
||||
|
||||
// SetConfig controls optimizations (mostly backend-specific) that may transform
|
||||
// the output of the cache to work better with specific kernels. If not called,
|
||||
// the backend settings will be used. This works well when calling Attention.
|
||||
//
|
||||
// The config can be overridden by models, especially if they require vanilla
|
||||
// output when implementing their own version of attention. To do this, pass
|
||||
// an empty ml.CacheConfig.
|
||||
//
|
||||
// Most models will not need to use this.
|
||||
SetConfig(ml.CacheConfig)
|
||||
|
||||
// ** cache management **
|
||||
|
||||
// Init sets up runtime parameters.
|
||||
// backend: Used to allocate cache data storage and execute management operations (such as defrag)
|
||||
// dtype: The data type for storing cache entries
|
||||
// maxSequences: The maximum number of sequences stored in the cache - across all batches
|
||||
// capacity: The number of cache entries to store, per sequence
|
||||
// maxBatch: The maximum number of tokens that can occur in a single batch
|
||||
Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int)
|
||||
|
||||
// Close closes the cache and frees resources associated with it
|
||||
Close()
|
||||
|
||||
// StartForward is called before the start of the model's forward pass.
|
||||
// For each token in the coming batch, there must be a corresponding
|
||||
// entry in positions and seqs. reserve is to preallocate memory
|
||||
// without actually storing data in the cache.
|
||||
StartForward(ctx ml.Context, batch input.Batch, reserve bool) error
|
||||
|
||||
// CopyPrefix copies tokens in the range [0, len) from srcSeq to dstSeq
|
||||
CopyPrefix(srcSeq, dstSeq int, len int32)
|
||||
|
||||
// CanResume returns true if the cache can continue with the next token at
|
||||
// the given position and sequence. Assumes that the caller has already
|
||||
// verified the contents of the cache.
|
||||
CanResume(seq int, pos int32) bool
|
||||
|
||||
// Remove deletes tokens in the range [beginIndex, endIndex) from seq. Set
|
||||
// endIndex to math.MaxInt32 to remove everything starting at beginIndex.
|
||||
//
|
||||
// If an error occurs, the entire context for the sequence should be
|
||||
// removed by calling Remove(seq, 0, math.MaxInt32)
|
||||
Remove(seq int, beginIndex, endIndex int32) error
|
||||
}
|
||||
738
kvcache/causal.go
Normal file
738
kvcache/causal.go
Normal file
@@ -0,0 +1,738 @@
|
||||
package kvcache
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"math"
|
||||
"slices"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error)
|
||||
|
||||
// Causal cache stores K and V tensors according to their position in the
|
||||
// sequence. Returns the history and a mask for attending to past tokens
|
||||
//
|
||||
// The tensors are of shape embed dim, kv heads, batch size
|
||||
// The mask is of shape history size, batch size
|
||||
type Causal struct {
|
||||
DType ml.DType
|
||||
windowSize int32
|
||||
chunkSize int32
|
||||
|
||||
opts CausalOptions
|
||||
|
||||
// config controls mostly backend-specific optimizations
|
||||
config *ml.CacheConfig
|
||||
|
||||
// ** current forward pass **
|
||||
|
||||
// curReserve indicates that this forward pass is only for
|
||||
// memory reservation and we should not update our metadata
|
||||
// based on it.
|
||||
curReserve bool
|
||||
|
||||
// the active layer for Get and Put
|
||||
curLayer int
|
||||
|
||||
// starting location for data storage for this batch
|
||||
curLoc int
|
||||
|
||||
// size of the current batch
|
||||
curBatchSize int
|
||||
|
||||
// mask of the cache as used by this batch
|
||||
curMask ml.Tensor
|
||||
|
||||
// locations in the cache that are needed for this batch
|
||||
curCellRange cellRange
|
||||
|
||||
// curSequences is the sequences corresponding to this pass's entries in the cache
|
||||
curSequences []int
|
||||
|
||||
// curPositions is the positions corresponding to this pass's entries in the cache
|
||||
curPositions []int32
|
||||
|
||||
// ** cache metadata **
|
||||
|
||||
// for each possible location in the cache, stores the position and set of sequences
|
||||
// that reference the data there
|
||||
cells []cacheCell
|
||||
|
||||
// maps from sequence to the range of locations where it is stored in the cache
|
||||
cellRanges map[int]cellRange
|
||||
|
||||
// ** cache data storage **
|
||||
|
||||
shiftFn shiftFn
|
||||
backend ml.Backend
|
||||
ctxs map[int]ml.Context
|
||||
keys, values map[int]ml.Tensor
|
||||
}
|
||||
|
||||
type cacheCell struct {
|
||||
pos int32
|
||||
sequences []int
|
||||
}
|
||||
|
||||
type cellRange struct {
|
||||
min int
|
||||
max int
|
||||
}
|
||||
|
||||
func NewCausalCache(shift shiftFn) *Causal {
|
||||
return &Causal{
|
||||
windowSize: math.MaxInt32,
|
||||
shiftFn: shift,
|
||||
ctxs: make(map[int]ml.Context),
|
||||
keys: make(map[int]ml.Tensor),
|
||||
values: make(map[int]ml.Tensor),
|
||||
}
|
||||
}
|
||||
|
||||
func NewSWACache(windowSize int32, shift shiftFn) *Causal {
|
||||
return &Causal{
|
||||
windowSize: windowSize,
|
||||
shiftFn: shift,
|
||||
ctxs: make(map[int]ml.Context),
|
||||
keys: make(map[int]ml.Tensor),
|
||||
values: make(map[int]ml.Tensor),
|
||||
}
|
||||
}
|
||||
|
||||
func NewChunkedAttentionCache(chunkSize int32, shift shiftFn) *Causal {
|
||||
return &Causal{
|
||||
windowSize: math.MaxInt32,
|
||||
chunkSize: chunkSize,
|
||||
shiftFn: shift,
|
||||
ctxs: make(map[int]ml.Context),
|
||||
keys: make(map[int]ml.Tensor),
|
||||
values: make(map[int]ml.Tensor),
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
|
||||
if c.config == nil {
|
||||
var config ml.CacheConfig
|
||||
if cc, ok := backend.(ml.BackendCacheConfig); ok {
|
||||
config = cc.CacheConfig()
|
||||
}
|
||||
c.config = &config
|
||||
}
|
||||
|
||||
if c.config.CachePadding == 0 {
|
||||
c.config.CachePadding = 1
|
||||
}
|
||||
|
||||
if c.config.MaskBatchPadding == 0 {
|
||||
c.config.MaskBatchPadding = 1
|
||||
}
|
||||
|
||||
if c.config.MaskDType == ml.DTypeOther {
|
||||
c.config.MaskDType = ml.DTypeF32
|
||||
}
|
||||
|
||||
var cacheSize int
|
||||
if c.windowSize == math.MaxInt32 || capacity < int(c.windowSize) {
|
||||
cacheSize = maxSequences * capacity
|
||||
} else {
|
||||
cacheSize = (maxSequences * int(c.windowSize)) + maxBatch
|
||||
}
|
||||
cacheSize = roundUp(cacheSize, c.config.CachePadding)
|
||||
c.cells = make([]cacheCell, cacheSize)
|
||||
|
||||
c.DType = dtype
|
||||
c.cellRanges = make(map[int]cellRange)
|
||||
c.backend = backend
|
||||
}
|
||||
|
||||
func (c *Causal) SetConfig(config ml.CacheConfig) {
|
||||
if c.config != nil {
|
||||
panic("config cannot be changed after being previously set, either by the model or backend")
|
||||
}
|
||||
|
||||
c.config = &config
|
||||
}
|
||||
|
||||
func (c *Causal) Close() {
|
||||
for _, ctx := range c.ctxs {
|
||||
ctx.Close()
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
|
||||
c.curReserve = reserve
|
||||
c.curBatchSize = len(batch.Positions)
|
||||
c.curSequences = batch.Sequences
|
||||
c.curPositions = batch.Positions
|
||||
c.opts.Except = nil
|
||||
|
||||
if !c.curReserve {
|
||||
c.updateSlidingWindow()
|
||||
|
||||
var err error
|
||||
c.curLoc, err = c.findStartLoc()
|
||||
if errors.Is(err, ErrKvCacheFull) {
|
||||
c.defrag()
|
||||
c.curLoc, err = c.findStartLoc()
|
||||
}
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
c.curCellRange = newRange()
|
||||
for i, pos := range batch.Positions {
|
||||
seq := batch.Sequences[i]
|
||||
|
||||
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
|
||||
|
||||
seqRange, ok := c.cellRanges[seq]
|
||||
if !ok {
|
||||
seqRange = newRange()
|
||||
}
|
||||
|
||||
if c.curLoc+i > seqRange.max {
|
||||
seqRange.max = c.curLoc + i
|
||||
}
|
||||
if seqRange.max > c.curCellRange.max {
|
||||
c.curCellRange.max = seqRange.max
|
||||
}
|
||||
|
||||
if c.curLoc+i < seqRange.min {
|
||||
seqRange.min = c.curLoc + i
|
||||
}
|
||||
if seqRange.min < c.curCellRange.min {
|
||||
c.curCellRange.min = seqRange.min
|
||||
}
|
||||
c.cellRanges[seq] = seqRange
|
||||
}
|
||||
} else {
|
||||
// If we are reserving memory, don't update any of the cache metadata but set the size
|
||||
// to the worst case.
|
||||
c.curLoc = 0
|
||||
c.curCellRange.min = 0
|
||||
c.curCellRange.max = len(c.cells) - 1
|
||||
}
|
||||
|
||||
c.curMask = c.buildMask(ctx)
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func newRange() cellRange {
|
||||
return cellRange{
|
||||
min: math.MaxInt,
|
||||
max: 0,
|
||||
}
|
||||
}
|
||||
|
||||
// Find the first contiguous block of at least curBatchSize
|
||||
func (c *Causal) findStartLoc() (int, error) {
|
||||
var start, count int
|
||||
for i := range c.cells {
|
||||
if len(c.cells[i].sequences) == 0 {
|
||||
count++
|
||||
if count >= c.curBatchSize {
|
||||
return start, nil
|
||||
}
|
||||
} else {
|
||||
start = i + 1
|
||||
count = 0
|
||||
}
|
||||
}
|
||||
|
||||
return 0, fmt.Errorf("%w (cache: %v batch: %v)", ErrKvCacheFull, len(c.cells), c.curBatchSize)
|
||||
}
|
||||
|
||||
func (c *Causal) updateSlidingWindow() {
|
||||
if c.windowSize == math.MaxInt32 {
|
||||
return
|
||||
}
|
||||
|
||||
// create a map of unique sequences to the lowest position in that sequence
|
||||
lowestPos := make(map[int]int32)
|
||||
for i := range c.curPositions {
|
||||
seq := c.curSequences[i]
|
||||
|
||||
pos, ok := lowestPos[seq]
|
||||
if !ok {
|
||||
pos = c.curPositions[i]
|
||||
} else if c.curPositions[i] < pos {
|
||||
pos = c.curPositions[i]
|
||||
}
|
||||
|
||||
lowestPos[seq] = pos
|
||||
}
|
||||
|
||||
// delete any entries that are beyond the window of the oldest position in the sequence
|
||||
for seq, pos := range lowestPos {
|
||||
oldRange, ok := c.cellRanges[seq]
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
|
||||
newRange := newRange()
|
||||
|
||||
for i := oldRange.min; i <= oldRange.max; i++ {
|
||||
if slices.Contains(c.cells[i].sequences, seq) {
|
||||
if c.cells[i].pos < pos-c.windowSize {
|
||||
c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == seq })
|
||||
} else {
|
||||
newRange.min = min(newRange.min, i)
|
||||
newRange.max = max(newRange.max, i)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
c.cellRanges[seq] = newRange
|
||||
}
|
||||
}
|
||||
|
||||
func roundDown(length, pad int) int {
|
||||
return (length / pad) * pad
|
||||
}
|
||||
|
||||
func roundUp(length, pad int) int {
|
||||
return ((length + pad - 1) / pad) * pad
|
||||
}
|
||||
|
||||
// Builds a mask of history x batch indicating whether for each token in the batch the
|
||||
// token in the history should apply. This is based on both the sequence and causality (the
|
||||
// position of the history is not ahead of the token in the batch).
|
||||
func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
|
||||
// Align and pad the two dimensions as required by the backend
|
||||
batchSize := roundUp(c.curBatchSize, c.config.MaskBatchPadding)
|
||||
|
||||
c.curCellRange.min = roundDown(c.curCellRange.min, c.config.CachePadding)
|
||||
c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1
|
||||
|
||||
length := c.curCellRange.max - c.curCellRange.min + 1
|
||||
|
||||
if c.curReserve {
|
||||
return ctx.Input().Empty(c.config.MaskDType, length, batchSize)
|
||||
}
|
||||
|
||||
mask := make([]float32, batchSize*length)
|
||||
|
||||
for i := range c.curBatchSize {
|
||||
enabled := !slices.Contains(c.opts.Except, i)
|
||||
for j := c.curCellRange.min; j <= c.curCellRange.max; j++ {
|
||||
if !slices.Contains(c.cells[j].sequences, c.curSequences[i]) ||
|
||||
(enabled && c.cells[j].pos > c.curPositions[i]) ||
|
||||
c.chunkSize > 0 && c.cells[j].pos < c.curPositions[i]-c.curPositions[i]%c.chunkSize ||
|
||||
c.cells[j].pos < c.curPositions[i]-c.windowSize {
|
||||
mask[i*length+(j-c.curCellRange.min)] = float32(math.Inf(-1))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Mask out any padding tokens we added. For padding that we added to the cache history, this
|
||||
// has already been masked out because the sequence doesn't match.
|
||||
for i := c.curBatchSize * length; i < len(mask); i++ {
|
||||
mask[i] = float32(math.Inf(-1))
|
||||
}
|
||||
|
||||
maskTensor := ctx.Input().FromFloatSlice(mask, length, batchSize)
|
||||
|
||||
if c.config.MaskDType != ml.DTypeF32 {
|
||||
out := ctx.Input().Empty(c.config.MaskDType, maskTensor.Shape()...)
|
||||
ctx.Forward(maskTensor.Copy(ctx, out))
|
||||
maskTensor = out
|
||||
}
|
||||
|
||||
return maskTensor
|
||||
}
|
||||
|
||||
func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) {
|
||||
for i, key := range c.keys {
|
||||
if key == nil {
|
||||
continue
|
||||
}
|
||||
|
||||
kHeadDim := key.Dim(0)
|
||||
numKVHeads := key.Dim(1)
|
||||
rowSize := key.Stride(2)
|
||||
|
||||
kSrcView := key.View(ctx, rowSize*src, kHeadDim*numKVHeads*length)
|
||||
kDstView := key.View(ctx, rowSize*dst, kHeadDim*numKVHeads*length)
|
||||
|
||||
value := c.values[i]
|
||||
var vSrcView, vDstView ml.Tensor
|
||||
if c.config.PermutedV {
|
||||
vHeadDim := value.Dim(1)
|
||||
elemSize := value.Stride(0)
|
||||
|
||||
vSrcView = value.View(ctx, elemSize*src, length, len(c.cells)*elemSize, vHeadDim*numKVHeads)
|
||||
vDstView = value.View(ctx, elemSize*dst, length, len(c.cells)*elemSize, vHeadDim*numKVHeads)
|
||||
} else {
|
||||
vHeadDim := value.Dim(0)
|
||||
rowSize := value.Stride(2)
|
||||
|
||||
vSrcView = value.View(ctx, rowSize*src, vHeadDim*numKVHeads*length)
|
||||
vDstView = value.View(ctx, rowSize*dst, vHeadDim*numKVHeads*length)
|
||||
}
|
||||
|
||||
ctx.Forward(
|
||||
kSrcView.Copy(ctx, kDstView),
|
||||
vSrcView.Copy(ctx, vDstView),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) defrag() {
|
||||
slog.Debug("defragmenting kv cache")
|
||||
|
||||
// Defrag strategy:
|
||||
// - Search for empty holes at the beginning of the cache,
|
||||
// filling them with active data starting at the end
|
||||
// - If there are contiguous elements that need to be moved,
|
||||
// combine them into a single operation by holding new moves
|
||||
// until we see that the next one is non-contiguous
|
||||
// - Fill up the context with the maximum number of operations it
|
||||
// can hold then compute that and continue with a new context
|
||||
//
|
||||
// We could try to optimize placement by grouping blocks from
|
||||
// the same sequences together but most likely the next forward
|
||||
// pass will disrupt this anyways, so the real world benefit
|
||||
// seems limited as this time.
|
||||
|
||||
ctx := c.backend.NewContext()
|
||||
|
||||
// For every move, 6 tensors are required per layer (2 views and a
|
||||
// copy for each of k and v). We also need to refer to the original
|
||||
// k and v cache tensors - once per layer, not per move.
|
||||
layers := 0
|
||||
for _, key := range c.keys {
|
||||
if key == nil {
|
||||
continue
|
||||
}
|
||||
layers++
|
||||
}
|
||||
|
||||
maxMoves := (ctx.MaxGraphNodes() - 2*layers) / (6 * layers)
|
||||
moves := 0
|
||||
|
||||
var pendingSrc, pendingDst, pendingLen int
|
||||
src := len(c.cells) - 1
|
||||
|
||||
for dst := 0; dst < src; dst++ {
|
||||
if len(c.cells[dst].sequences) == 0 {
|
||||
for ; src > dst; src-- {
|
||||
if len(c.cells[src].sequences) != 0 {
|
||||
c.cells[dst] = c.cells[src]
|
||||
c.cells[src] = cacheCell{}
|
||||
|
||||
if pendingLen > 0 {
|
||||
if src == pendingSrc-pendingLen && dst == pendingDst+pendingLen {
|
||||
pendingSrc = src
|
||||
pendingLen++
|
||||
break
|
||||
} else {
|
||||
c.moveCells(ctx, pendingSrc, pendingDst, pendingLen)
|
||||
moves++
|
||||
}
|
||||
}
|
||||
|
||||
pendingSrc = src
|
||||
pendingDst = dst
|
||||
pendingLen = 1
|
||||
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if moves >= maxMoves {
|
||||
ctx.Compute()
|
||||
ctx.Close()
|
||||
ctx = c.backend.NewContext()
|
||||
|
||||
moves = 0
|
||||
}
|
||||
}
|
||||
|
||||
if pendingLen > 0 {
|
||||
c.moveCells(ctx, pendingSrc, pendingDst, pendingLen)
|
||||
moves++
|
||||
}
|
||||
|
||||
if moves > 0 {
|
||||
ctx.Compute()
|
||||
}
|
||||
ctx.Close()
|
||||
|
||||
// Reset range metadata
|
||||
for seq := range c.cellRanges {
|
||||
seqRange := newRange()
|
||||
|
||||
for i, cell := range c.cells {
|
||||
if slices.Contains(cell.sequences, seq) {
|
||||
if i < seqRange.min {
|
||||
seqRange.min = i
|
||||
}
|
||||
if i > seqRange.max {
|
||||
seqRange.max = i
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
c.cellRanges[seq] = seqRange
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) SetLayer(layer int) {
|
||||
c.curLayer = layer
|
||||
}
|
||||
|
||||
type CausalOptions struct {
|
||||
// Enabled controls whether the causal mask is generated for a particular index in a batch
|
||||
Except []int
|
||||
}
|
||||
|
||||
// SetCausal disables causal mask generation for a particular range of indicies in
|
||||
// the current batch for subsequent calls to Get. The state resets for the next forward pass.
|
||||
func (c *Causal) SetCausal(ctx ml.Context, opts CausalOptions) {
|
||||
if !slices.Equal(c.opts.Except, opts.Except) {
|
||||
c.opts = opts
|
||||
if ctx != nil {
|
||||
c.curMask = c.buildMask(ctx)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
|
||||
key := c.keys[c.curLayer]
|
||||
value := c.values[c.curLayer]
|
||||
|
||||
kHeadDim := key.Dim(0)
|
||||
numKVHeads := key.Dim(1)
|
||||
rowSize := key.Stride(2)
|
||||
cachedSize := c.curMask.Dim(0)
|
||||
|
||||
key = key.View(ctx, rowSize*c.curCellRange.min,
|
||||
kHeadDim, key.Stride(1),
|
||||
numKVHeads, key.Stride(2),
|
||||
cachedSize,
|
||||
)
|
||||
|
||||
if c.config.PermutedV {
|
||||
vHeadDim := value.Dim(1)
|
||||
elemSize := value.Stride(0)
|
||||
|
||||
value = value.View(ctx, elemSize*c.curCellRange.min,
|
||||
cachedSize, value.Stride(1),
|
||||
vHeadDim, value.Stride(2),
|
||||
numKVHeads,
|
||||
)
|
||||
} else {
|
||||
vHeadDim := value.Dim(0)
|
||||
rowSize := value.Stride(2)
|
||||
|
||||
value = value.View(ctx, rowSize*c.curCellRange.min,
|
||||
vHeadDim, value.Stride(1),
|
||||
numKVHeads, value.Stride(2),
|
||||
cachedSize,
|
||||
)
|
||||
}
|
||||
|
||||
return key, value, c.curMask
|
||||
}
|
||||
|
||||
func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
|
||||
kHeadDim := key.Dim(0)
|
||||
vHeadDim := value.Dim(0)
|
||||
numKVHeads := key.Dim(1)
|
||||
batchSize := key.Dim(2)
|
||||
|
||||
if c.curBatchSize != batchSize {
|
||||
panic(fmt.Errorf("inconsistent batch sizes (layer: %v, batch size: %v layer batch size: %v)", c.curLayer, c.curBatchSize, batchSize))
|
||||
}
|
||||
|
||||
if _, ok := c.ctxs[c.curLayer]; !ok {
|
||||
c.ctxs[c.curLayer] = c.backend.NewContextSize(2).Layer(c.curLayer)
|
||||
}
|
||||
|
||||
if _, ok := c.keys[c.curLayer]; !ok {
|
||||
c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, kHeadDim, numKVHeads, len(c.cells))
|
||||
}
|
||||
|
||||
if _, ok := c.values[c.curLayer]; !ok {
|
||||
if c.config.PermutedV {
|
||||
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, len(c.cells), vHeadDim, numKVHeads)
|
||||
} else {
|
||||
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, vHeadDim, numKVHeads, len(c.cells))
|
||||
}
|
||||
}
|
||||
|
||||
rowSize := c.keys[c.curLayer].Stride(2)
|
||||
ctx.Forward(key.Copy(ctx, c.keys[c.curLayer].View(ctx, rowSize*c.curLoc, kHeadDim*numKVHeads*batchSize)))
|
||||
|
||||
if c.config.PermutedV {
|
||||
elemSize := c.values[c.curLayer].Stride(0)
|
||||
|
||||
value = value.Permute(ctx, 1, 2, 0, 3)
|
||||
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, elemSize*c.curLoc, batchSize, len(c.cells)*elemSize, vHeadDim*numKVHeads)))
|
||||
} else {
|
||||
rowSize := c.values[c.curLayer].Stride(2)
|
||||
|
||||
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, rowSize*c.curLoc, vHeadDim*numKVHeads*batchSize)))
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) {
|
||||
seqRange := newRange()
|
||||
|
||||
for i := range c.cells {
|
||||
// Remove the contents of dstSeq so that we only have the copied prefix, metadata will be reset at the end
|
||||
if slices.Contains(c.cells[i].sequences, dstSeq) {
|
||||
c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == dstSeq })
|
||||
}
|
||||
|
||||
if slices.Contains(c.cells[i].sequences, srcSeq) && c.cells[i].pos < len {
|
||||
c.cells[i].sequences = append(c.cells[i].sequences, dstSeq)
|
||||
if i < seqRange.min {
|
||||
seqRange.min = i
|
||||
}
|
||||
if i > seqRange.max {
|
||||
seqRange.max = i
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
c.cellRanges[dstSeq] = seqRange
|
||||
}
|
||||
|
||||
func (c *Causal) CanResume(seq int, pos int32) bool {
|
||||
if c.windowSize == math.MaxInt32 {
|
||||
return true
|
||||
}
|
||||
|
||||
seqRange, ok := c.cellRanges[seq]
|
||||
if !ok {
|
||||
return false
|
||||
}
|
||||
|
||||
// for sliding window, check that the window of the new sequence is contained in
|
||||
// the window of what we are storing
|
||||
var last int32 = -1
|
||||
for i := seqRange.min; i <= seqRange.max; i++ {
|
||||
if slices.Contains(c.cells[i].sequences, seq) {
|
||||
last = max(last, c.cells[i].pos)
|
||||
}
|
||||
}
|
||||
|
||||
if last == -1 {
|
||||
return false
|
||||
}
|
||||
|
||||
lastWindowStart := max(0, last-c.windowSize)
|
||||
posWindowStart := max(0, pos-c.windowSize)
|
||||
|
||||
return posWindowStart >= lastWindowStart
|
||||
}
|
||||
|
||||
func (c *Causal) shift(seq int, beginIndex, offset int32) error {
|
||||
if c.shiftFn == nil {
|
||||
return ErrNotSupported
|
||||
}
|
||||
|
||||
ctx := c.backend.NewContext()
|
||||
defer ctx.Close()
|
||||
|
||||
seqRange := c.cellRanges[seq]
|
||||
size := seqRange.max - seqRange.min + 1
|
||||
|
||||
offsets := make([]int32, size)
|
||||
for i := range offsets {
|
||||
cell := c.cells[seqRange.min+i]
|
||||
|
||||
if slices.Contains(cell.sequences, seq) && cell.pos >= beginIndex {
|
||||
offsets[i] = offset
|
||||
}
|
||||
}
|
||||
|
||||
kShift := ctx.Input().FromIntSlice(offsets, len(offsets))
|
||||
|
||||
for i, key := range c.keys {
|
||||
if key == nil {
|
||||
continue
|
||||
}
|
||||
|
||||
kHeadDim := key.Dim(0)
|
||||
numKVHeads := key.Dim(1)
|
||||
rowSize := key.Stride(2)
|
||||
|
||||
key = key.View(ctx, rowSize*seqRange.min,
|
||||
kHeadDim, key.Stride(1),
|
||||
numKVHeads, key.Stride(2),
|
||||
size,
|
||||
)
|
||||
|
||||
roped, err := c.shiftFn(ctx, i, key, kShift)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
ctx.Forward(roped.Copy(ctx, key))
|
||||
}
|
||||
|
||||
ctx.Compute()
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error {
|
||||
// TODO(jessegross): We should check to see if removing the middle of the sequence will
|
||||
// cause the sliding window to encompass tokens that we no longer have. If so, then we
|
||||
// should return an error, which will trigger the runner to evaluate the full history and
|
||||
// rebuild the window. However, if we have multimodal inputs in our history, this reuse
|
||||
// results in use after free, so we don't do it for now.
|
||||
|
||||
var offset int32
|
||||
if endIndex != math.MaxInt32 {
|
||||
offset = beginIndex - endIndex
|
||||
}
|
||||
|
||||
seqRange := newRange()
|
||||
|
||||
for i := range c.cells {
|
||||
if slices.Contains(c.cells[i].sequences, seq) {
|
||||
if c.cells[i].pos >= beginIndex && c.cells[i].pos < endIndex {
|
||||
c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == seq })
|
||||
} else {
|
||||
if c.cells[i].pos >= endIndex {
|
||||
if slices.ContainsFunc(c.cells[i].sequences, func(s int) bool { return s != seq }) {
|
||||
return errors.New("shifting cells shared by multiple sequences not supported")
|
||||
}
|
||||
|
||||
c.cells[i].pos += offset
|
||||
}
|
||||
if i < seqRange.min {
|
||||
seqRange.min = i
|
||||
}
|
||||
if i > seqRange.max {
|
||||
seqRange.max = i
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if seqRange == newRange() {
|
||||
delete(c.cellRanges, seq)
|
||||
return nil
|
||||
}
|
||||
|
||||
c.cellRanges[seq] = seqRange
|
||||
|
||||
if endIndex != math.MaxInt32 {
|
||||
err := c.shift(seq, endIndex+offset, offset)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
598
kvcache/causal_test.go
Normal file
598
kvcache/causal_test.go
Normal file
@@ -0,0 +1,598 @@
|
||||
package kvcache
|
||||
|
||||
import (
|
||||
"math"
|
||||
"slices"
|
||||
"testing"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type testCase struct {
|
||||
name string
|
||||
in []float32
|
||||
inShape []int
|
||||
seqs []int
|
||||
pos []int32
|
||||
expected []float32
|
||||
expectedShape []int
|
||||
expectedMask []float32
|
||||
}
|
||||
|
||||
func TestStore(t *testing.T) {
|
||||
backend := &testBackend{}
|
||||
cache := NewCausalCache(nil)
|
||||
defer cache.Close()
|
||||
|
||||
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
tests := []testCase{
|
||||
{
|
||||
name: "FirstBatch",
|
||||
in: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
|
||||
inShape: []int{2, 3, 4},
|
||||
seqs: []int{0, 0, 0, 0},
|
||||
pos: []int32{0, 1, 2, 3},
|
||||
expected: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
|
||||
expectedShape: []int{2, 3, 4},
|
||||
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
|
||||
},
|
||||
{
|
||||
name: "SecondBatch",
|
||||
in: []float32{115, 215, 125, 225, 135, 235},
|
||||
inShape: []int{2, 3, 1},
|
||||
seqs: []int{0},
|
||||
pos: []int32{4},
|
||||
expected: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234, 115, 215, 125, 225, 135, 235},
|
||||
expectedShape: []int{2, 3, 5},
|
||||
expectedMask: []float32{0, 0, 0, 0, 0},
|
||||
},
|
||||
}
|
||||
|
||||
testCache(t, backend, cache, tests)
|
||||
}
|
||||
|
||||
func TestSWA(t *testing.T) {
|
||||
backend := &testBackend{}
|
||||
cache := NewSWACache(1, nil)
|
||||
defer cache.Close()
|
||||
|
||||
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
tests := []testCase{
|
||||
{
|
||||
name: "FirstBatch",
|
||||
in: []float32{1, 2, 3, 4},
|
||||
inShape: []int{1, 1, 4},
|
||||
seqs: []int{0, 0, 0, 0},
|
||||
pos: []int32{0, 1, 2, 3},
|
||||
expected: []float32{1, 2, 3, 4},
|
||||
expectedShape: []int{1, 1, 4},
|
||||
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
|
||||
},
|
||||
{
|
||||
name: "SecondBatch",
|
||||
in: []float32{5, 6},
|
||||
inShape: []int{1, 1, 2},
|
||||
seqs: []int{0, 0},
|
||||
pos: []int32{4, 5},
|
||||
expected: []float32{5, 6, 3, 4},
|
||||
expectedShape: []int{1, 1, 4},
|
||||
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1))},
|
||||
},
|
||||
}
|
||||
|
||||
testCache(t, backend, cache, tests)
|
||||
}
|
||||
|
||||
func TestChunkedAttention(t *testing.T) {
|
||||
cache := NewChunkedAttentionCache(2, nil)
|
||||
defer cache.Close()
|
||||
|
||||
var b testBackend
|
||||
cache.Init(&b, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
x := float32(math.Inf(-1))
|
||||
|
||||
testCache(
|
||||
t, &b, cache,
|
||||
[]testCase{
|
||||
{
|
||||
name: "FirstBatch",
|
||||
in: []float32{1, 2, 3, 4},
|
||||
inShape: []int{1, 1, 4},
|
||||
seqs: []int{0, 0, 0, 0},
|
||||
pos: []int32{0, 1, 2, 3},
|
||||
expected: []float32{1, 2, 3, 4},
|
||||
expectedShape: []int{1, 1, 4},
|
||||
expectedMask: []float32{
|
||||
0, x, x, x,
|
||||
0, 0, x, x,
|
||||
x, x, 0, x,
|
||||
x, x, 0, 0,
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "SecondBatch",
|
||||
in: []float32{5, 6, 7},
|
||||
inShape: []int{1, 1, 3},
|
||||
seqs: []int{0, 0, 0},
|
||||
pos: []int32{4, 5, 6},
|
||||
expected: []float32{1, 2, 3, 4, 5, 6, 7},
|
||||
expectedShape: []int{1, 1, 7},
|
||||
expectedMask: []float32{
|
||||
x, x, x, x, 0, x, x,
|
||||
x, x, x, x, 0, 0, x,
|
||||
x, x, x, x, x, x, 0,
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "ThirdBatch",
|
||||
in: []float32{8, 9},
|
||||
inShape: []int{1, 1, 2},
|
||||
seqs: []int{0, 0},
|
||||
pos: []int32{7, 8},
|
||||
expected: []float32{1, 2, 3, 4, 5, 6, 7, 8, 9},
|
||||
expectedShape: []int{1, 1, 9},
|
||||
expectedMask: []float32{
|
||||
x, x, x, x, x, x, 0, 0, x,
|
||||
x, x, x, x, x, x, x, x, 0,
|
||||
},
|
||||
},
|
||||
},
|
||||
)
|
||||
}
|
||||
|
||||
func TestSequences(t *testing.T) {
|
||||
backend := &testBackend{}
|
||||
cache := NewCausalCache(nil)
|
||||
defer cache.Close()
|
||||
|
||||
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
tests := []testCase{
|
||||
{
|
||||
name: "FirstBatch",
|
||||
in: []float32{1, 2, 3, 4},
|
||||
inShape: []int{1, 1, 4},
|
||||
seqs: []int{0, 0, 1, 1},
|
||||
pos: []int32{0, 1, 0, 1},
|
||||
expected: []float32{1, 2, 3, 4},
|
||||
expectedShape: []int{1, 1, 4},
|
||||
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
|
||||
},
|
||||
{
|
||||
name: "SecondBatch",
|
||||
in: []float32{5, 6},
|
||||
inShape: []int{1, 1, 2},
|
||||
seqs: []int{0, 1},
|
||||
pos: []int32{2, 2},
|
||||
expected: []float32{1, 2, 3, 4, 5, 6},
|
||||
expectedShape: []int{1, 1, 6},
|
||||
expectedMask: []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), 0},
|
||||
},
|
||||
}
|
||||
|
||||
testCache(t, backend, cache, tests)
|
||||
}
|
||||
|
||||
func TestRemove(t *testing.T) {
|
||||
backend := &testBackend{}
|
||||
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return key.Add(ctx, shift), nil
|
||||
})
|
||||
defer cache.Close()
|
||||
|
||||
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
tests := []testCase{
|
||||
{
|
||||
name: "FirstBatch",
|
||||
in: []float32{1, 2, 3, 4},
|
||||
inShape: []int{1, 1, 4},
|
||||
seqs: []int{0, 0, 1, 1},
|
||||
pos: []int32{0, 1, 0, 1},
|
||||
expected: []float32{1, 2, 3, 4},
|
||||
expectedShape: []int{1, 1, 4},
|
||||
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
|
||||
},
|
||||
}
|
||||
|
||||
testCache(t, backend, cache, tests)
|
||||
|
||||
err := cache.Remove(0, 1, math.MaxInt32)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
tests = []testCase{
|
||||
{
|
||||
name: "RemoveEnd",
|
||||
in: []float32{5, 6},
|
||||
inShape: []int{1, 1, 2},
|
||||
seqs: []int{0, 1},
|
||||
pos: []int32{1, 2},
|
||||
expected: []float32{1, 2, 3, 4, 5, 6},
|
||||
expectedShape: []int{1, 1, 6},
|
||||
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), 0},
|
||||
},
|
||||
}
|
||||
|
||||
testCache(t, backend, cache, tests)
|
||||
|
||||
err = cache.Remove(0, 0, 1)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
tests = []testCase{
|
||||
{
|
||||
name: "RemoveMiddle",
|
||||
in: []float32{7, 8},
|
||||
inShape: []int{1, 1, 2},
|
||||
seqs: []int{0, 0},
|
||||
pos: []int32{1, 2},
|
||||
expected: []float32{7, 8, 3, 4, 4},
|
||||
expectedShape: []int{1, 1, 5},
|
||||
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0},
|
||||
},
|
||||
}
|
||||
|
||||
testCache(t, backend, cache, tests)
|
||||
}
|
||||
|
||||
func TestDefrag(t *testing.T) {
|
||||
backend := &testBackend{}
|
||||
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return key.Add(ctx, shift), nil
|
||||
})
|
||||
defer cache.Close()
|
||||
|
||||
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
tests := []testCase{
|
||||
{
|
||||
name: "FirstBatch",
|
||||
in: []float32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
|
||||
inShape: []int{1, 1, 16},
|
||||
seqs: []int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
pos: []int32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
|
||||
expected: []float32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
|
||||
expectedShape: []int{1, 1, 16},
|
||||
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
},
|
||||
}
|
||||
|
||||
testCache(t, backend, cache, tests)
|
||||
|
||||
err := cache.Remove(0, 2, 4)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
err = cache.Remove(0, 13, math.MaxInt32)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
tests = []testCase{
|
||||
{
|
||||
name: "Defrag",
|
||||
in: []float32{17, 18, 19},
|
||||
inShape: []int{1, 1, 3},
|
||||
seqs: []int{0, 0, 0},
|
||||
pos: []int32{16, 17, 18},
|
||||
expected: []float32{1, 2, 12, 13, 3, 4, 5, 6, 7, 8, 9, 10, 11, 17, 18, 19},
|
||||
expectedShape: []int{1, 1, 16},
|
||||
expectedMask: []float32{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
},
|
||||
}
|
||||
|
||||
testCache(t, backend, cache, tests)
|
||||
}
|
||||
|
||||
func TestCopy(t *testing.T) {
|
||||
backend := &testBackend{}
|
||||
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { return key, nil })
|
||||
defer cache.Close()
|
||||
|
||||
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
tests := []testCase{
|
||||
{
|
||||
name: "FirstBatch",
|
||||
in: []float32{1, 2, 3, 4},
|
||||
inShape: []int{1, 1, 4},
|
||||
seqs: []int{0, 0, 0, 0},
|
||||
pos: []int32{0, 1, 2, 3},
|
||||
expected: []float32{1, 2, 3, 4},
|
||||
expectedShape: []int{1, 1, 4},
|
||||
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
|
||||
},
|
||||
}
|
||||
|
||||
testCache(t, backend, cache, tests)
|
||||
|
||||
cache.CopyPrefix(0, 1, 2)
|
||||
|
||||
tests = []testCase{
|
||||
{
|
||||
name: "Copy",
|
||||
in: []float32{5, 6},
|
||||
inShape: []int{1, 1, 2},
|
||||
seqs: []int{1, 1},
|
||||
pos: []int32{3, 4},
|
||||
expected: []float32{1, 2, 3, 4, 5, 6},
|
||||
expectedShape: []int{1, 1, 6},
|
||||
expectedMask: []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
|
||||
},
|
||||
}
|
||||
|
||||
testCache(t, backend, cache, tests)
|
||||
}
|
||||
|
||||
func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase) {
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
context := backend.NewContext()
|
||||
defer context.Close()
|
||||
|
||||
err := cache.StartForward(context, input.Batch{Positions: test.pos, Sequences: test.seqs}, false)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
cache.SetLayer(0)
|
||||
tensor := context.FromFloatSlice(test.in, test.inShape...)
|
||||
cache.Put(context, tensor, tensor)
|
||||
|
||||
out, _, mask := cache.Get(context)
|
||||
|
||||
context.Forward(out, mask).Compute(out, mask)
|
||||
|
||||
if !slices.Equal(out.Floats(), test.expected) {
|
||||
t.Errorf("TestCache: have %v; want %v", out.Floats(), test.expected)
|
||||
}
|
||||
|
||||
if !slices.Equal(out.Shape(), test.expectedShape) {
|
||||
t.Errorf("TestCache: has shape %v; want %v", out.Shape(), test.expectedShape)
|
||||
}
|
||||
|
||||
if !slices.Equal(mask.Floats(), test.expectedMask) {
|
||||
t.Errorf("TestCache: have mask: have %v want %v", mask.Floats(), test.expectedMask)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestCanResume(t *testing.T) {
|
||||
backend := &testBackend{}
|
||||
windowSize := int32(4)
|
||||
cache := NewSWACache(windowSize, nil)
|
||||
defer cache.Close()
|
||||
|
||||
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
context := backend.NewContext()
|
||||
defer context.Close()
|
||||
|
||||
err := cache.StartForward(context, input.Batch{
|
||||
Positions: []int32{0, 1, 2, 3},
|
||||
Sequences: []int{0, 0, 0, 0},
|
||||
}, false)
|
||||
if err != nil {
|
||||
t.Fatalf("StartForward failed: %v", err)
|
||||
}
|
||||
|
||||
cache.SetLayer(0)
|
||||
tensor := context.FromFloatSlice([]float32{1, 2, 3, 4}, 1, 1, 4)
|
||||
cache.Put(context, tensor, tensor)
|
||||
|
||||
// with window size 4, nothing has slid out of the window yet
|
||||
if !cache.CanResume(0, 0) {
|
||||
t.Errorf("CanResume(0, 0) = false, want true (within window)")
|
||||
}
|
||||
if !cache.CanResume(0, 1) {
|
||||
t.Errorf("CanResume(0, 1) = false, want true (within window)")
|
||||
}
|
||||
if !cache.CanResume(0, 2) {
|
||||
t.Errorf("CanResume(0, 2) = false, want true (within window)")
|
||||
}
|
||||
if !cache.CanResume(0, 3) {
|
||||
t.Errorf("CanResume(0, 3) = false, want true (latest position)")
|
||||
}
|
||||
|
||||
// shift window by adding position 4
|
||||
err = cache.StartForward(context, input.Batch{
|
||||
Positions: []int32{4, 5},
|
||||
Sequences: []int{0, 0},
|
||||
}, false)
|
||||
if err != nil {
|
||||
t.Fatalf("StartForward failed: %v", err)
|
||||
}
|
||||
|
||||
cache.SetLayer(0)
|
||||
tensor = context.FromFloatSlice([]float32{5, 6}, 1, 1, 2)
|
||||
cache.Put(context, tensor, tensor)
|
||||
|
||||
// only the latest position has overlapping windows
|
||||
if cache.CanResume(0, 0) {
|
||||
t.Errorf("after shift: CanResume(0, 0) = true, want false (outside window)")
|
||||
}
|
||||
if cache.CanResume(0, 1) {
|
||||
t.Errorf("after shift: CanResume(0, 1) = true, want false (outside window)")
|
||||
}
|
||||
if cache.CanResume(0, 2) {
|
||||
t.Errorf("after shift: CanResume(0, 2) = true, want false (outside window)")
|
||||
}
|
||||
if cache.CanResume(0, 3) {
|
||||
t.Errorf("after shift: CanResume(0, 3) = true, want false (outside window)")
|
||||
}
|
||||
if cache.CanResume(0, 4) {
|
||||
t.Errorf("after shift: CanResume(0, 4) = true, want false (outside window)")
|
||||
}
|
||||
if !cache.CanResume(0, 5) {
|
||||
t.Errorf("after shift: CanResume(0, 5) = false, want true (latest position)")
|
||||
}
|
||||
}
|
||||
|
||||
type testBackend struct {
|
||||
ml.Backend
|
||||
}
|
||||
|
||||
func (b *testBackend) NewContext() ml.Context {
|
||||
return &testContext{}
|
||||
}
|
||||
|
||||
func (b *testBackend) NewContextSize(int) ml.Context {
|
||||
return &testContext{}
|
||||
}
|
||||
|
||||
type testContext struct {
|
||||
ml.Context
|
||||
}
|
||||
|
||||
func (c *testContext) Empty(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
total := 0
|
||||
|
||||
if len(shape) > 0 {
|
||||
total = 1
|
||||
for _, s := range shape {
|
||||
total *= s
|
||||
}
|
||||
}
|
||||
|
||||
return &testTensor{dtype: dtype, elementSize: 4, data: make([]float32, total), shape: shape}
|
||||
}
|
||||
|
||||
func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
return c.Empty(dtype, shape...)
|
||||
}
|
||||
|
||||
func (c *testContext) FromFloatSlice(s []float32, shape ...int) ml.Tensor {
|
||||
t := c.Empty(ml.DTypeF32, shape...).(*testTensor)
|
||||
|
||||
copy(t.data, s)
|
||||
|
||||
return t
|
||||
}
|
||||
|
||||
func (c *testContext) FromIntSlice(s []int32, shape ...int) ml.Tensor {
|
||||
f := make([]float32, len(s))
|
||||
for i := range f {
|
||||
f[i] = float32(s[i])
|
||||
}
|
||||
|
||||
out := c.FromFloatSlice(f, shape...)
|
||||
out.(*testTensor).dtype = ml.DTypeI32
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (c *testContext) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
|
||||
s := make([]float32, 0, int((stop-start)/step))
|
||||
for i := start; i < stop; i += step {
|
||||
s = append(s, i)
|
||||
}
|
||||
|
||||
out := c.FromFloatSlice(s, len(s))
|
||||
out.(*testTensor).dtype = dtype
|
||||
return out
|
||||
}
|
||||
|
||||
func (c *testContext) Input() ml.Context { return c }
|
||||
func (c *testContext) Layer(int) ml.Context { return c }
|
||||
|
||||
func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
|
||||
|
||||
func (c *testContext) Compute(...ml.Tensor) {}
|
||||
|
||||
func (c *testContext) Reserve() {}
|
||||
|
||||
func (c *testContext) MaxGraphNodes() int {
|
||||
return 10
|
||||
}
|
||||
|
||||
func (c *testContext) Close() {}
|
||||
|
||||
type testTensor struct {
|
||||
ml.Tensor
|
||||
|
||||
dtype ml.DType
|
||||
elementSize int
|
||||
data []float32
|
||||
shape []int
|
||||
}
|
||||
|
||||
func (t *testTensor) Dim(n int) int {
|
||||
return t.shape[n]
|
||||
}
|
||||
|
||||
func (t *testTensor) Stride(n int) int {
|
||||
stride := t.elementSize
|
||||
for i := range n {
|
||||
stride *= t.shape[i]
|
||||
}
|
||||
|
||||
return stride
|
||||
}
|
||||
|
||||
func (t *testTensor) Shape() []int {
|
||||
return t.shape
|
||||
}
|
||||
|
||||
func (t *testTensor) DType() ml.DType {
|
||||
return t.dtype
|
||||
}
|
||||
|
||||
func (t *testTensor) Floats() []float32 {
|
||||
out := make([]float32, len(t.data))
|
||||
copy(out, t.data)
|
||||
return out
|
||||
}
|
||||
|
||||
func (t *testTensor) Neg(ctx ml.Context) ml.Tensor {
|
||||
out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
|
||||
for i := range out.data {
|
||||
out.data[i] = -t.data[i]
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
|
||||
|
||||
for i := range out.data {
|
||||
out.data[i] = t.data[i] + t2.(*testTensor).data[i]
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
|
||||
offset /= t.elementSize
|
||||
|
||||
var s []int
|
||||
|
||||
switch len(shape) {
|
||||
case 1:
|
||||
s = []int{shape[0]}
|
||||
case 5:
|
||||
s = []int{shape[0], shape[2], shape[4]}
|
||||
default:
|
||||
panic("unsupported number of dimensions")
|
||||
}
|
||||
|
||||
context := &testContext{}
|
||||
|
||||
view := context.Empty(t.dtype, s...).(*testTensor)
|
||||
view.data = t.data[offset : offset+len(view.data)]
|
||||
|
||||
return view
|
||||
}
|
||||
|
||||
func (t *testTensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
copy(t2.(*testTensor).data, t.data)
|
||||
return nil
|
||||
}
|
||||
156
kvcache/encoder.go
Normal file
156
kvcache/encoder.go
Normal file
@@ -0,0 +1,156 @@
|
||||
package kvcache
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
// Encoder cache stores K and V tensors that are position independent
|
||||
//
|
||||
// The tensors can be of any shape and will be returned as they were stored
|
||||
// The mask is currently always nil
|
||||
//
|
||||
// Not currently safe for multiple sequences
|
||||
type EncoderCache struct {
|
||||
// config controls mostly backend-specific optimizations
|
||||
config *ml.CacheConfig
|
||||
|
||||
// ** current forward pass **
|
||||
|
||||
// the active layer for Get and Put
|
||||
curLayer int
|
||||
|
||||
// if something is stored during this pass, this
|
||||
// will be the position (but there is no guarantee
|
||||
// anything will be stored)
|
||||
curPos int32
|
||||
|
||||
// curReserve indicates that this forward pass is only for
|
||||
// memory reservation and we should not update our metadata
|
||||
// based on it.
|
||||
curReserve bool
|
||||
|
||||
// ** cache metadata **
|
||||
|
||||
// was something stored in the cache?
|
||||
encoderCached bool
|
||||
|
||||
// position of the cached data
|
||||
encoderPos int32
|
||||
|
||||
// ** cache data storage **
|
||||
backend ml.Backend
|
||||
ctxs map[int]ml.Context
|
||||
keys, values map[int]ml.Tensor
|
||||
}
|
||||
|
||||
func NewEncoderCache() *EncoderCache {
|
||||
return &EncoderCache{
|
||||
ctxs: make(map[int]ml.Context),
|
||||
keys: make(map[int]ml.Tensor),
|
||||
values: make(map[int]ml.Tensor),
|
||||
}
|
||||
}
|
||||
|
||||
func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
|
||||
if c.config == nil {
|
||||
var config ml.CacheConfig
|
||||
if cc, ok := backend.(ml.BackendCacheConfig); ok {
|
||||
config = cc.CacheConfig()
|
||||
}
|
||||
c.config = &config
|
||||
}
|
||||
|
||||
if maxSequences > 1 {
|
||||
panic(fmt.Errorf("encoder cache does not support multiple sequences; requested: %v", maxSequences))
|
||||
}
|
||||
|
||||
if c.config.CachePadding != 0 && c.config.CachePadding != 1 {
|
||||
panic(fmt.Errorf("encoder cache is unable to enforce requested CachePadding (%v)", c.config.CachePadding))
|
||||
}
|
||||
|
||||
c.backend = backend
|
||||
}
|
||||
|
||||
func (c *EncoderCache) SetConfig(config ml.CacheConfig) {
|
||||
if c.config != nil {
|
||||
panic("config cannot be changed after being previously set, either by the model or backend")
|
||||
}
|
||||
|
||||
c.config = &config
|
||||
}
|
||||
|
||||
func (c *EncoderCache) Close() {
|
||||
for _, ctx := range c.ctxs {
|
||||
ctx.Close()
|
||||
}
|
||||
}
|
||||
|
||||
func (c *EncoderCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
|
||||
// We work with the most recent image
|
||||
if len(batch.Multimodal) > 0 {
|
||||
c.curPos = batch.Positions[batch.Multimodal[len(batch.Multimodal)-1].Index]
|
||||
}
|
||||
|
||||
c.curReserve = reserve
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (c *EncoderCache) SetLayer(layer int) {
|
||||
c.curLayer = layer
|
||||
}
|
||||
|
||||
func (c *EncoderCache) EncoderCached() bool {
|
||||
return c.encoderCached
|
||||
}
|
||||
|
||||
func (c *EncoderCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
|
||||
return c.keys[c.curLayer], c.values[c.curLayer], nil
|
||||
}
|
||||
|
||||
func (c *EncoderCache) Put(ctx ml.Context, key, value ml.Tensor) {
|
||||
if !c.curReserve {
|
||||
c.encoderPos = c.curPos
|
||||
c.encoderCached = true
|
||||
}
|
||||
|
||||
if c.config.PermutedV {
|
||||
value = value.Permute(ctx, 1, 2, 0, 3)
|
||||
}
|
||||
|
||||
if _, ok := c.ctxs[c.curLayer]; !ok {
|
||||
c.ctxs[c.curLayer] = c.backend.NewContextSize(2).Layer(c.curLayer)
|
||||
}
|
||||
|
||||
if _, ok := c.keys[c.curLayer]; !ok {
|
||||
c.keys[c.curLayer] = c.ctxs[c.curLayer].Empty(key.DType(), key.Shape()...)
|
||||
}
|
||||
|
||||
if _, ok := c.values[c.curLayer]; !ok {
|
||||
c.values[c.curLayer] = c.ctxs[c.curLayer].Empty(value.DType(), value.Shape()...)
|
||||
}
|
||||
|
||||
ctx.Forward(
|
||||
key.Copy(ctx, c.keys[c.curLayer]),
|
||||
value.Copy(ctx, c.values[c.curLayer]),
|
||||
)
|
||||
}
|
||||
|
||||
func (c *EncoderCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
|
||||
panic("encoder cache does not support multiple sequences")
|
||||
}
|
||||
|
||||
func (c *EncoderCache) CanResume(seq int, pos int32) bool {
|
||||
return true
|
||||
}
|
||||
|
||||
func (c *EncoderCache) Remove(seq int, beginIndex, endIndex int32) error {
|
||||
if c.encoderPos >= beginIndex && c.encoderPos < endIndex {
|
||||
c.encoderCached = false
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
110
kvcache/wrapper.go
Normal file
110
kvcache/wrapper.go
Normal file
@@ -0,0 +1,110 @@
|
||||
package kvcache
|
||||
|
||||
import (
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
// Wrapper cache is a container for multiple types of caches,
|
||||
// such as for the encoding and decoding portions of a model.
|
||||
type WrapperCache struct {
|
||||
// caches we are wrapping
|
||||
caches []Cache
|
||||
|
||||
// cache to be used for this layer
|
||||
curType int
|
||||
}
|
||||
|
||||
func NewWrapperCache(caches ...Cache) *WrapperCache {
|
||||
return &WrapperCache{
|
||||
caches: caches,
|
||||
}
|
||||
}
|
||||
|
||||
func (c *WrapperCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
|
||||
for _, cache := range c.caches {
|
||||
cache.Init(backend, dtype, maxSequences, capacity, maxBatch)
|
||||
}
|
||||
}
|
||||
|
||||
func (c *WrapperCache) SetConfig(config ml.CacheConfig) {
|
||||
for _, cache := range c.caches {
|
||||
cache.SetConfig(config)
|
||||
}
|
||||
}
|
||||
|
||||
func (c *WrapperCache) Close() {
|
||||
for _, cache := range c.caches {
|
||||
cache.Close()
|
||||
}
|
||||
}
|
||||
|
||||
func (c *WrapperCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
|
||||
for i, cache := range c.caches {
|
||||
err := cache.StartForward(ctx, batch, reserve)
|
||||
if err != nil {
|
||||
// unwind on error - Remove with endIndex set to math.MaxInt32 does not fail
|
||||
for j := i - 1; j >= 0; j-- {
|
||||
for k := range batch.Positions {
|
||||
_ = c.caches[j].Remove(batch.Sequences[k], batch.Positions[k], math.MaxInt32)
|
||||
}
|
||||
}
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
c.curType = 0
|
||||
return nil
|
||||
}
|
||||
|
||||
func (c *WrapperCache) SetLayer(layer int) {
|
||||
for _, cache := range c.caches {
|
||||
cache.SetLayer(layer)
|
||||
}
|
||||
}
|
||||
|
||||
func (c *WrapperCache) SetLayerType(layerType int) {
|
||||
c.curType = layerType
|
||||
}
|
||||
|
||||
func (c *WrapperCache) UnderlyingCache() Cache {
|
||||
return c.caches[c.curType]
|
||||
}
|
||||
|
||||
func (c *WrapperCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
|
||||
return c.caches[c.curType].Get(ctx)
|
||||
}
|
||||
|
||||
func (c *WrapperCache) Put(ctx ml.Context, key, value ml.Tensor) {
|
||||
c.caches[c.curType].Put(ctx, key, value)
|
||||
}
|
||||
|
||||
func (c *WrapperCache) CopyPrefix(srcSeq, dstSeq int, len int32) {
|
||||
for _, cache := range c.caches {
|
||||
cache.CopyPrefix(srcSeq, dstSeq, len)
|
||||
}
|
||||
}
|
||||
|
||||
func (c *WrapperCache) CanResume(seq int, pos int32) bool {
|
||||
for _, cache := range c.caches {
|
||||
if !cache.CanResume(seq, pos) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
func (c *WrapperCache) Remove(seq int, beginIndex, endIndex int32) error {
|
||||
// If the one of these fails, the caller is supposed to retry with endIndex set to math.MaxInt32, which should not fail
|
||||
for _, cache := range c.caches {
|
||||
err := cache.Remove(seq, beginIndex, endIndex)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user