mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-21 22:33:56 +00:00
224 lines
6.7 KiB
Go
224 lines
6.7 KiB
Go
package olmo3
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
|
|
"github.com/ollama/ollama/fs"
|
|
"github.com/ollama/ollama/kvcache"
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/ml/nn"
|
|
"github.com/ollama/ollama/ml/nn/rope"
|
|
"github.com/ollama/ollama/model"
|
|
"github.com/ollama/ollama/model/input"
|
|
)
|
|
|
|
const (
|
|
cacheTypeSWA = 0
|
|
cacheTypeCausal = 1
|
|
)
|
|
|
|
type Options struct {
|
|
hiddenSize, numHeads, numKVHeads int
|
|
eps, ropeBase, ropeScale float32
|
|
|
|
originalContextLength int
|
|
attnFactor float32
|
|
|
|
ropeType string
|
|
ropeExtrapolation float32
|
|
|
|
slidingWindowPattern []bool
|
|
}
|
|
|
|
type Model struct {
|
|
model.Base
|
|
model.TextProcessor
|
|
|
|
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
|
Layers []Layer `gguf:"blk"`
|
|
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
|
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
|
|
|
Options
|
|
}
|
|
|
|
func New(c fs.Config) (model.Model, error) {
|
|
vocabulary := model.Vocabulary{
|
|
Values: c.Strings("tokenizer.ggml.tokens"),
|
|
Scores: c.Floats("tokenizer.ggml.scores"),
|
|
Types: c.Ints("tokenizer.ggml.token_type"),
|
|
Merges: c.Strings("tokenizer.ggml.merges"),
|
|
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false),
|
|
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
|
|
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
|
EOS: append(
|
|
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
|
|
c.Ints("tokenizer.ggml.eos_token_ids")...,
|
|
),
|
|
}
|
|
|
|
processor := model.NewBytePairEncoding(
|
|
&vocabulary,
|
|
"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
|
)
|
|
|
|
m := Model{
|
|
TextProcessor: processor,
|
|
Layers: make([]Layer, c.Uint("block_count")),
|
|
Options: Options{
|
|
hiddenSize: int(c.Uint("embedding_length")),
|
|
numHeads: int(c.Uint("attention.head_count")),
|
|
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
|
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
|
ropeBase: c.Float("rope.freq_base", 1e4),
|
|
ropeScale: c.Float("rope.scaling.factor", 1),
|
|
originalContextLength: int(c.Uint("rope.scaling.original_context_length")),
|
|
attnFactor: c.Float("rope.scaling.attn_factor", 1),
|
|
ropeType: c.String("rope.scaling.type"),
|
|
ropeExtrapolation: c.Float("rope.scaling.extrapolation_factor", 1.0),
|
|
slidingWindowPattern: c.Bools("attention.sliding_window_pattern"),
|
|
},
|
|
}
|
|
|
|
m.Cache = kvcache.NewWrapperCache(
|
|
kvcache.NewSWACache(int32(c.Uint("attention.sliding_window")), m.Shift),
|
|
kvcache.NewCausalCache(m.Shift),
|
|
)
|
|
|
|
return &m, nil
|
|
}
|
|
|
|
type SelfAttention struct {
|
|
Query *nn.Linear `gguf:"attn_q"`
|
|
Key *nn.Linear `gguf:"attn_k"`
|
|
Value *nn.Linear `gguf:"attn_v"`
|
|
Output *nn.Linear `gguf:"attn_output"`
|
|
QNorm *nn.RMSNorm `gguf:"attn_q_norm"`
|
|
KNorm *nn.RMSNorm `gguf:"attn_k_norm"`
|
|
}
|
|
|
|
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor, isSWA bool) ml.Tensor {
|
|
freqScale := float32(1.0)
|
|
ropeOpts := []func(*rope.Options){rope.WithTypeNeoX()}
|
|
|
|
if !isSWA {
|
|
freqScale = 1. / o.ropeScale
|
|
if o.originalContextLength > 0 {
|
|
ropeOpts = append(ropeOpts,
|
|
rope.WithOriginalContextLength(o.originalContextLength),
|
|
rope.WithExtrapolationFactor(o.ropeExtrapolation),
|
|
)
|
|
}
|
|
}
|
|
|
|
return nn.RoPE(ctx, states, positions, o.hiddenSize/o.numHeads, o.ropeBase, freqScale, ropeOpts...)
|
|
}
|
|
|
|
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tensor, cache kvcache.Cache, m *Model, isSWA bool) ml.Tensor {
|
|
batchSize := hiddenState.Dim(1)
|
|
headDim := m.hiddenSize / m.numHeads
|
|
|
|
query := sa.Query.Forward(ctx, hiddenState)
|
|
query = sa.QNorm.Forward(ctx, query, m.eps)
|
|
query = query.Reshape(ctx, headDim, m.numHeads, batchSize)
|
|
query = m.Options.applyRotaryPositionEmbeddings(ctx, query, positions, isSWA)
|
|
|
|
key := sa.Key.Forward(ctx, hiddenState)
|
|
key = sa.KNorm.Forward(ctx, key, m.eps)
|
|
key = key.Reshape(ctx, headDim, m.numKVHeads, batchSize)
|
|
key = m.Options.applyRotaryPositionEmbeddings(ctx, key, positions, isSWA)
|
|
|
|
value := sa.Value.Forward(ctx, hiddenState)
|
|
value = value.Reshape(ctx, headDim, m.numKVHeads, batchSize)
|
|
|
|
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
|
|
attention = attention.Reshape(ctx, m.hiddenSize, batchSize)
|
|
|
|
return sa.Output.Forward(ctx, attention)
|
|
}
|
|
|
|
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
|
isSWA := m.isSWALayer(layer)
|
|
return m.Options.applyRotaryPositionEmbeddings(ctx, key, shift, isSWA), nil
|
|
}
|
|
|
|
type MLP struct {
|
|
Up *nn.Linear `gguf:"ffn_up"`
|
|
Down *nn.Linear `gguf:"ffn_down"`
|
|
Gate *nn.Linear `gguf:"ffn_gate"`
|
|
}
|
|
|
|
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, m *Model) ml.Tensor {
|
|
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
|
|
return mlp.Down.Forward(ctx, hiddenState)
|
|
}
|
|
|
|
type Layer struct {
|
|
SelfAttention *SelfAttention
|
|
PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
|
|
MLP *MLP
|
|
PostFFWNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
|
|
}
|
|
|
|
func (l *Layer) Forward(ctx ml.Context, hiddenState, positions, outputs ml.Tensor, cache kvcache.Cache, m *Model, isSWA bool) ml.Tensor {
|
|
residual := hiddenState
|
|
|
|
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positions, cache, m, isSWA)
|
|
|
|
if outputs != nil {
|
|
hiddenState = hiddenState.Rows(ctx, outputs)
|
|
residual = residual.Rows(ctx, outputs)
|
|
}
|
|
hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, m.eps)
|
|
|
|
hiddenState = hiddenState.Add(ctx, residual)
|
|
residual = hiddenState
|
|
|
|
hiddenState = l.MLP.Forward(ctx, hiddenState, m)
|
|
hiddenState = l.PostFFWNorm.Forward(ctx, hiddenState, m.eps)
|
|
|
|
return hiddenState.Add(ctx, residual)
|
|
}
|
|
|
|
// OLMo3 has Sliding Window Attention (SWA) for 3 out of every 4 layers.
|
|
func (m *Model) isSWALayer(layerIdx int) bool {
|
|
return m.Options.slidingWindowPattern[layerIdx]
|
|
}
|
|
|
|
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
|
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
|
|
|
|
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
|
|
|
for i, layer := range m.Layers {
|
|
m.Cache.SetLayer(i)
|
|
cacheType := cacheTypeSWA
|
|
|
|
isSWA := m.isSWALayer(i)
|
|
if !isSWA {
|
|
cacheType = cacheTypeCausal
|
|
}
|
|
|
|
wc, ok := m.Cache.(*kvcache.WrapperCache)
|
|
if !ok {
|
|
return nil, fmt.Errorf("expected *kvcache.WrapperCache, got %T", m.Cache)
|
|
}
|
|
wc.SetLayerType(cacheType)
|
|
|
|
var outputs ml.Tensor
|
|
if i == len(m.Layers)-1 {
|
|
outputs = batch.Outputs
|
|
}
|
|
|
|
hiddenState = layer.Forward(ctx, hiddenState, positions, outputs, m.Cache, m, isSWA)
|
|
}
|
|
|
|
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
|
return m.Output.Forward(ctx, hiddenState), nil
|
|
}
|
|
|
|
func init() {
|
|
model.Register("olmo3", New)
|
|
}
|